摘要:2.等比数列的前n项和公式: 当时. ① 或 ② 当q=1时.
网址:http://m.1010jiajiao.com/timu_id_3965923[举报]
已知数列
的前n项和
,数列
有
,
(1)求
的通项;
(2)若
,求数列
的前n项和
.
【解析】第一问中,利用当n=1时,![]()
当
时,![]()
得到通项公式
第二问中,∵
∴
∴数列
是以2为首项,2为公比的等比数列,利用错位相减法得到。
解:(1)当n=1时,
……………………1分
当
时,
……4分
又![]()
∴
……………………5分
(2)∵
∴
∴
……………………7分
又∵
,
∴ ![]()
∴数列
是以2为首项,2为公比的等比数列,
∴
……………………9分
∴
∴
①
②
①-②得:![]()
∴![]()
查看习题详情和答案>>
设等比数列{an}的首项为a,公比q>0且q≠1,前n项和为Sn.
(Ⅰ)当a=1时,S1+1,S2+2,S3+1三数成等差数列,求数列{an}的通项公式;
(Ⅱ)对任意正整数n,命题甲:Sn,(Sn+1+1),Sn+2三数构成等差数列. 命题乙:Sn+1,(Sn+2+1),Sn+3三数构成等差数列.求证:对于同一个正整数n,命题甲与命题乙不能同时为真命题.
查看习题详情和答案>>
(Ⅰ)当a=1时,S1+1,S2+2,S3+1三数成等差数列,求数列{an}的通项公式;
(Ⅱ)对任意正整数n,命题甲:Sn,(Sn+1+1),Sn+2三数构成等差数列. 命题乙:Sn+1,(Sn+2+1),Sn+3三数构成等差数列.求证:对于同一个正整数n,命题甲与命题乙不能同时为真命题.