题目内容
已知数列
的前n项和
,数列
有
,
(1)求
的通项;
(2)若
,求数列
的前n项和
.
【解析】第一问中,利用当n=1时,![]()
当
时,![]()
得到通项公式
第二问中,∵
∴
∴数列
是以2为首项,2为公比的等比数列,利用错位相减法得到。
解:(1)当n=1时,
……………………1分
当
时,
……4分
又![]()
∴
……………………5分
(2)∵
∴
∴
……………………7分
又∵
,
∴ ![]()
∴数列
是以2为首项,2为公比的等比数列,
∴
……………………9分
∴
∴
①
②
①-②得:![]()
∴![]()
【答案】
(1)
(2)
练习册系列答案
相关题目