摘要:是函数在点xo处存在极限的( ) 必要不充分条件 既不充分也不必要条件
网址:http://m.1010jiajiao.com/timu_id_3963958[举报]
(2012•宿州三模)设函数f(x)=p(x-
)-2lnx,g(x)=
.(p是实数,e是自然对数的底数)
(1)当p=2时,求与函数y=f(x)的图象在点A(1,0)处相切的切线方程;
(2)若f(x)在其定义域内为单调递增函数,求p的取值范围;
(3)若在[1,e]上至少存在一点xo,使得f(x0)>g(x0)成立,求p的取值范围.
查看习题详情和答案>>
| 1 |
| x |
| 2e |
| x |
(1)当p=2时,求与函数y=f(x)的图象在点A(1,0)处相切的切线方程;
(2)若f(x)在其定义域内为单调递增函数,求p的取值范围;
(3)若在[1,e]上至少存在一点xo,使得f(x0)>g(x0)成立,求p的取值范围.
设函数f(x)=p(x-
)-2lnx,g(x)=
.(p是实数,e是自然对数的底数)
(1)当p=2时,求与函数y=f(x)的图象在点A(1,0)处相切的切线方程;
(2)若f(x)在其定义域内为单调递增函数,求p的取值范围;
(3)若在[1,e]上至少存在一点xo,使得f(x)>g(x)成立,求p的取值范围.
查看习题详情和答案>>
(1)当p=2时,求与函数y=f(x)的图象在点A(1,0)处相切的切线方程;
(2)若f(x)在其定义域内为单调递增函数,求p的取值范围;
(3)若在[1,e]上至少存在一点xo,使得f(x)>g(x)成立,求p的取值范围.
查看习题详情和答案>>
设函数f(x)=p(x-
)-2lnx,g(x)=
.(p是实数,e是自然对数的底数)
(1)当p=2时,求与函数y=f(x)的图象在点A(1,0)处相切的切线方程;
(2)若f(x)在其定义域内为单调递增函数,求p的取值范围;
(3)若在[1,e]上至少存在一点xo,使得f(x)>g(x)成立,求p的取值范围.
查看习题详情和答案>>
(1)当p=2时,求与函数y=f(x)的图象在点A(1,0)处相切的切线方程;
(2)若f(x)在其定义域内为单调递增函数,求p的取值范围;
(3)若在[1,e]上至少存在一点xo,使得f(x)>g(x)成立,求p的取值范围.
查看习题详情和答案>>