摘要:已知函数 (1)求的单调区间, 可以向作两条切线.求a的取值范围.
网址:http://m.1010jiajiao.com/timu_id_3959529[举报]
已知函数f(x)=lnx,g(x)=
ax2+bx,a≠0.
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行. 查看习题详情和答案>>
| 1 | 2 |
(Ⅰ)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(Ⅱ)设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,证明C1在点M处的切线与C2在点N处的切线不平行. 查看习题详情和答案>>
已知函数f(x)=lnx,g(x)=
ax2+bx,记h(x)=f(x)-g(x).
(1)若a=0,且h(x)<0在(0,+∞)上恒成立,求实数b的取值范围;
(2)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)若a≠0,设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,请判断C1在点M处的切线与C2在点N处的切线能否平行,并说明你的理由.
查看习题详情和答案>>
| 1 | 2 |
(1)若a=0,且h(x)<0在(0,+∞)上恒成立,求实数b的取值范围;
(2)若b=2,且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)若a≠0,设函数f(x)的图象C1与函数g(x)图象C2交于点P、Q,过线段PQ的中点作x轴的垂线分别交C1,C2于点M、N,请判断C1在点M处的切线与C2在点N处的切线能否平行,并说明你的理由.