摘要:13.若a+b+c=0.且a≠0.则一元二次方程ax2+bx+c=0必有一个定根.它是 .
网址:http://m.1010jiajiao.com/timu_id_3954840[举报]
对于一元二次方程ax2+bx+c=0(a≠0),下列说法:
①若
+
=-1,则方程ax2+bx+c=0一定有一根是x=1;
②若c=a3,b=2a2,则方程ax2+bx+c=0有两个相等的实数根;
③若a<0,b<0,c>0,则方程cx2+bx+a=0必有实数根;
④若ab-bc=0,且
<-1,则方程cx2+bx+a=0的两实数一定互为相反数.其中正确的结论是( )
①若
| a |
| c |
| b |
| c |
②若c=a3,b=2a2,则方程ax2+bx+c=0有两个相等的实数根;
③若a<0,b<0,c>0,则方程cx2+bx+a=0必有实数根;
④若ab-bc=0,且
| a |
| c |
| A、①②③④ | B、①②④ |
| C、①③ | D、②④ |
已知一元二次方程ax2+bx+c=0(a≠0).下列说法:①若a+b+c=0,则b2-4ac≥0;②若方程两根为-1和2,则2a+c=0;③若2a+b=0,且方程有一根大于2,则另一根必为负数;④若b=2a+3c,则方程有两个不相等的实根.其中正确的有( )
查看习题详情和答案>>
对于一元二次方程ax2+bx+c=O(a≠0),下列说法:
①若
+
=-1,则方程ax2+bx+c=O 一定有一根是x=1;
②若c=a3,b=2a2,则方程ax2+bx+c=O有两个相等的实数根;
③若a<0,b<0,c>0,则方程cx2+bx+a=0必有实数根;
④若ab-bc=0且
<-l,则方程cx2+bx+a=0的两实数根一定互为相反数..
其中正确的结论是( )
A.①②③④ B.①②④ C.①③ D.②④
查看习题详情和答案>>