摘要:设函数,计算和 . 答案:1004 解析:由于 . 设, 又, ∴. ∴S=1004.
网址:http://m.1010jiajiao.com/timu_id_3942859[举报]
设数列{an}的前n项和为Sn,对一切n∈N*,点(n,
)都在函数f(x)=x+
的图象上.
(Ⅰ)求a1,a2,a3及数列{an}的通项公式an;
(Ⅱ)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;
(Ⅲ)令g(n)=(1+
)n(n∈N*),求证:2≤g(n)<3.
查看习题详情和答案>>
| Sn |
| n |
| an |
| 2x |
(Ⅰ)求a1,a2,a3及数列{an}的通项公式an;
(Ⅱ)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;
(Ⅲ)令g(n)=(1+
| 2 |
| an |
设数列{an}的前n项和为Sn,对一切n∈N*,点(n,
)都在函数f(x)=x+
的图象上.
(1)计算a1,a2,a3,并归纳出数列{an}的通项公式;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;
(3)设An为数列{
}的前n项积,若不等式An
<f(a)-
对一切n∈N*都成立,求a的取值范围.
查看习题详情和答案>>
| Sn |
| n |
| an |
| 2x |
(1)计算a1,a2,a3,并归纳出数列{an}的通项公式;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;
(3)设An为数列{
| an-1 |
| an |
| an+1 |
| an+3 |
| 2a |