摘要:21. 已知椭圆的一条准线方程是其左.右顶点分别是A.B,双曲线的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率, (Ⅱ)在第一象限内取双曲线C2上一点P.连结AP交椭圆C1于点M.连结PB并延长交椭圆C1于点N.若. 求证:
网址:http://m.1010jiajiao.com/timu3_id_4465746[举报]
(本小题满分14分)
.已知中心在原点的椭圆的一个焦点为(0 ,
),且过点
,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C。
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值。
(3)求三角形ABC面积的最大值。
查看习题详情和答案>>(本小题满分14分)
如图,已知椭圆![]()
过点(1,
),离心率为
,左右焦点分别为
.点
为直线
:
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
和
为坐标原点.
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
、
斜率分别为![]()
.
(ⅰ)证明:![]()
(ⅱ )问直线
上是否存在一点
,使直线
的斜率
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
查看习题详情和答案>>
(本小题满分14分)
已知椭圆C的长轴长与短轴长之比为
,焦点坐标分别为F1(-2,0),F2(2,0),O是坐标原点.
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0)P是椭圆C上异于A、B的任意一点,直线AP、BP分别交于y轴于M、N两点,求
的值;
(3)在(2)的条件下,若G(s,o)、H(k,o)且
,(s<k),分别以线段OG、OH为边作两个正方形,求这两上正方形的面积和的最小值,并求出取得最小值时G、H两点的坐标.
已知椭圆C的长轴长与短轴长之比为
(1)求椭圆C的标准方程;
(2)已知A(-3,0),B(3,0)P是椭圆C上异于A、B的任意一点,直线AP、BP分别交于y轴于M、N两点,求
(3)在(2)的条件下,若G(s,o)、H(k,o)且