ÌâÄ¿ÄÚÈÝ
18£®ÔÚ¡°²â¶¨½ðÊôµÄµç×èÂÊ¡±ÊµÑéÖУ¬ËùÓòâÁ¿ÒÇÆ÷¾ùÒÑУ׼£¬´ý²à½ðÊô½ÓÈëµç·²¿·ÖµÄ³¤¶ÈԼΪ50cm£®£¨1£©ÓÃÂÝÐý²â΢Æ÷²âÁ¿½ðÊôË¿µÄÖ±¾¶£¬ÆäÖÐijһ´Î²âÁ¿½á¹ûÈçͼ1Ëùʾ£¬Æä¶ÁÊýӦΪ0.395¡«0.399mm£®£¨¸ÃÖµ½Ó½ü¶à´Î²âÁ¿µÄƽ¾ùÖµ£©
£¨2£©Ó÷ü°²·¨²âÁ¿µç×èË¿µÄµç×èRx£®ÊµÑéËùÓÃÆ÷²ÄΪ£ºµç³Ø×飨µç¶¯ÊÆ3V£¬ÄÚ×è1¦¸£©£¬µçÁ÷±í£¨ÄÚ×è0.1¦¸£©£¬µçѹ±í£¨ÄÚ×èÔ¼3k¦¸£©£¬»¬¶¯±ä×èÆ÷R£¨0¡«20¦¸£¬¶î¶¨µçÁ÷2A£©£¬¿ª¹Ø£¬µ¼ÏßÈô¸É£®Ä³Ð¡×éͬѧÀûÓÃÒÔÉÏÆ÷²ÄÕýÈ·Á¬½ÓºÃµç·£¬½øÐÐʵÑé²âÁ¿£¬¼Ç¼Êý¾ÝÈçÏ£º
| ´ÎÊý | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| U/V | 0.10 | 0.30 | 0.70 | 1.00 | 1.50 | 1.70 | 2.30 |
| I/A | 0.020 | 0.060 | 0.160 | 0.220 | 0.340 | 0.460 | 0.520 |
£¨3£©Õâ¸öС×éµÄͬѧÔÚ×ø±êÖ½ÉϽ¨Á¢U¡¢I×ø±êϵ£¬Èçͼ3Ëùʾ£®Í¼ÖÐÒѱê³öÁËÓë²âÁ¿Êý¾Ý¶ÔÓ¦µÄ4¸ö×ø±êµã£¬ÇëÔÚͼ4Öбê³öµÚ2¡¢4¡¢6´Î²âÁ¿Êý¾ÝµÄ3¸ö×ø±êµã£¬²¢Ãè»æ³öU-IͼÏߣ¬ÓÉͼÏߵóö½ðÊôË¿µÄ×èÖµR=4.5¦¸£¨±£Áô2λÓÐЧÊý×Ö£©£®
£¨4£©¸ù¾ÝÒÔÉÏÊý¾Ý¿ÉÒÔ¹ÀËã³ö½ðÊôË¿µÄµç×èÂÊԼΪC£®
A.1¡Á10-2¦¸•m B.1¡Á10-3¦¸•m C.1¡Á10-6¦¸•m D.1¡Á10-8¦¸•m£®
·ÖÎö £¨1£©¹ØÓÚÂÝÐý²â΢Æ÷µÄ¶ÁÊý£¬ÒªÏȶÁ³ö¹Ì¶¨¿Ì¶È£¬ÔÙ¶Á³ö¿É¶¯¿Ì¶È£¬È»ºóÏà¼Ó¼´¿ÉµÃ³ö½á¹û£®
£¨2£©¸ù¾ÝÊý¾Ý±È½Ïµçѹ±í¡¢µçÁ÷±íºÍ±»²âµç×èµÄ×èÖµ¹ØÏµ£¬È·¶¨¿É²ÉÈ¡µÄµç·£®
£¨3£©¸ù¾ÝͼÉÏËù±êµÄµã£¬×ö³öU--IͼÏߣ¬´Ó¶ø¿ÉµÃ³öµç×èÖµ
£¨4£©°ÑÒÔÉÏÊý¾Ý´úÈëµç×趨ÂÉ£¬¿ÉµÃ³ö½á¹û
½â´ð ½â£º£¨1£©¹Ì¶¨¿Ì¶È¶ÁÊýΪ0£¬¿É¶¯¿Ì¶È¶ÁÊýΪ39.7£¬Ëù²â³¤¶ÈΪ0+39.7¡Á0.01=0.397mm
£¨0.395¡«0.399£©
£¨2£©ÓɼǼÊý¾Ý¸ù¾ÝÅ·Ä·¶¨ÂÉ¿ÉÖª½ðÊôË¿µÄµç×èRxÔ¼5¦¸£®ÔòÓÐRx£¼$\sqrt{{R}_{A}{R}_{V}}$£¬ÊôÓÚСµç×裬ÓÃÍâ½Ó·¨²âÁ¿Îó²îС£¬ÓÉ£¨3£©ÖªÊÇÓ÷ü°²ÌØÐÔÇúÏßÀ´²âÁ¿µç×èµÄ£¬¾ÍÒªÇóµçѹµçÁ÷´Ó½Ó½ü0¿ªÊ¼µ÷½Ú£¬ËùÒÔÓ¦¸Ã²ÉÓ÷Öѹ½Ó·¨¹ÊÑ¡¼×£®
£¨3£©Ãè»æ³öµÚ2¡¢4¡¢6Èý¸öµãºó¿É¼ûµÚ6´Î²âÁ¿Êý¾ÝµÄ×ø±êµãÎó²îÌ«´óÉáÈ¥£¬È»ºó³öU-IͼÏߣ®ÈçÓÒͼËùʾ£»ÆäÖеÚ4´Î²âÁ¿Êý¾ÝµÄ×ø±êµãÔÚÃè»æ³öµÄU-IͼÏßÉÏ£¬ÓУº![]()
Rx=$\frac{1.00}{0.220}$=4.5¦¸
£¨4£©¸ù¾Ýµç×趨ÂÉR=¦Ñ$\frac{L}{S}$£¬µÃ¦Ñ=R$\frac{S}{L}$£¬
´úÈëÊý¾Ý¿É¼ÆËã³ö¦Ñ=1¡Á10-6¦¸•m£¬¹ÊÑ¡£ºC£®
¹Ê´ð°¸Îª£º£¨1£©0.395¡«0.399£»£¨2£©¼×£»£¨3£©ÈçͼËùʾ£¬4.5£»£¨4£©C£®
µãÆÀ ¸ÃÌâÊÇ×ÛºÏÐÔ½ÏÇ¿µÄÌ⣬½â´ðʱעÒâһϼ¸·½Ã棺
1¡¢¶ÔÓÚ³¤¶ÈµÄ²âÁ¿×¢Òâ¸ßÖÐËùÒªÇóµÄÓα꿨³ßºÍÂÝÐý²â΢Æ÷µÄʹÓ÷½·¨£¬¶ÁÊéʱÊǹ̶¨¿Ì¶ÈµÄÖµÓë¿É¶¯¿Ì¶ÈµÄÖµµÃºÍ£®
2¡¢»á¸ù¾Ýµçѹ±í¡¢µçÁ÷±í¼°±»²âµç×èµÄ×èÖµ¹ØÏµ£¬È·¶¨µçÁ÷±íÊÇÄÚ½Ó»¹ÊÇÍâ½Ó£®
3¡¢ÊµÎïÁ¬½Óʱ£¬×¢Òâµ¼Ïß²»ÄÜÏཻ²æ£¬²¢ÇÒҪעÒâ±ÕºÏµç½¨Ê±£¬·Öѹµç·µÄÊä³ö¶ËµçѹҪΪÁ㣮
4¡¢»áÓõç×趨ÂÉÀ´Çó½âµ¼Ïߵĵç×èÂÊ
| A£® | Áã | B£® | $\sqrt{2g£¨x+L£©sin¦È}$ | C£® | $\sqrt{\frac{2Eq£¨x+L£©}{m}}$ | D£® | $\sqrt{\frac{2Eq£¨x+L£©sin¦È}{m}}$ |
| A£® | Ô×ÓµÄÖÐÐÄÓÐÔ×Ӻˣ¬°üÀ¨´øÕýµçµÄÖÊ×ӺͲ»´øµçµÄÖÐ×Ó | |
| B£® | Ô×ÓµÄÕýµçºÉ¾ùÔÈ·Ö²¼ÔÚÕû¸öÔ×ÓÖÐ | |
| C£® | Ô×ÓµÄÈ«²¿ÕýµçºÉºÍ¼¸ºõÈ«²¿ÖÊÁ¿¶¼¼¯ÖÐÔÚÔ×ÓºËÀï | |
| D£® | ´ø¸ºµçµÄµç×ÓÔÚºËÍâÈÆ×źËÔÚ²»Í¬¹ìµÀÉÏÐýת | |
| E£® | ¦ÁÁ£×ÓÉ¢ÉäʵÑé֤ʵÁËÔ×Ӻ˵Ľṹ |
| A£® | ÍõÔ¾ÔÚ»ðÐDZíÃæÊܵÄÍòÓÐÒýÁ¦ÊÇÔÚµØÇò±íÃæÊÜÍòÓÐÒýÁ¦µÄ$\frac{2}{3}$ | |
| B£® | »ðÐDZíÃæµÄÖØÁ¦¼ÓËÙ¶ÈÊÇ$\frac{2}{3}$g | |
| C£® | »ðÐǵÚÒ»ÓîÖæËÙ¶ÈÊǵØÇòµÚÒ»ÓîÖæËٶȵÄ$\frac{\sqrt{2}}{3}$ | |
| D£® | ÍõÔ¾ÒÔÏàͬµÄ³õËÙ¶ÈÔÚ»ðÐÇÉÏÆðÌøÊ±£¬¿ÉÌøµÄ×î´ó¸ß¶ÈÊÇ$\frac{3}{2}$h |
| A£® | ABºÍBC¾ù˵Ã÷ÓîÖæÔÚÔÈËÙÅòÕÍ | |
| B£® | ABºÍBC¾ù˵Ã÷ÓîÖæÔÚ¼ÓËÙÅòÕÍ | |
| C£® | AB˵Ã÷ÓîÖæÔÚÔÈËÙÅòÕÍ£¬BC˵Ã÷ÓîÖæÔÚ¼ÓËÙÅòÕÍ | |
| D£® | AB˵Ã÷ÓîÖæÔÚÔÈËÙÅòÕÍ£¬BC˵Ã÷ÓîÖæÔÚ¼õËÙÅòÕÍ |