ÌâÄ¿ÄÚÈÝ
9£®£¨1£©Èô´«ËÍ´ø²»¶¯£¬ÇóÎï¿éÔ˶¯µÄ¼ÓËÙ¶È´óС£»
£¨2£©Èô´«ËÍ´øÒÔv=10m/sµÄËÙÂÊ˳ʱÕëת¶¯£¬ÇóÎï¿é´ÓAÔ˶¯µ½BËùÐèµÄʱ¼ä£»
£¨3£©Èô´«ËÍ´øÒÔv=10m/sµÄËÙÂÊÄæÊ±Õëת¶¯£¬ÇóÎï¿é´ÓAÔ˶¯µ½BËùÐèµÄʱ¼ä£®
·ÖÎö ¸ôÀ뷨ѡȡСÎï¿éΪÑо¿¶ÔÏó½øÐÐÊÜÁ¦·ÖÎö£¬È»ºóÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóСÎï¿éµÄ¼ÓËÙ¶È£¬È»ºóÓÉÔ˶¯Ñ§¹«Ê½Çó½â
½â´ð ½â£º£¨1£©Èô´«ËÍ´ø²»¶¯Ê±£¬ÊÜÁ¦·ÖÎöÈçͼ![]()
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÓУºmgsin¦È-f=ma
N-mgcos¦È=0
f=¦ÌN
ÁªÁ¢µÃ£º${a}_{1}^{\;}=gsin¦È-¦Ìgcos¦È$
´úÈëÊý¾Ý½âµÃ£º${a}_{1}^{\;}=10¡Ásin37¡ã-0.5¡Á10¡Á0.8=2m/{s}_{\;}^{2}$
£¨2£©¸ù¾Ý$l=\frac{1}{2}{a}_{1}^{\;}{t}_{1}^{2}$£¬´úÈë$16=\frac{1}{2}¡Á2{t}_{1}^{2}$
½âµÃ£º${t}_{1}^{\;}=4s$
£¨3£©¸Õ¿ªÊ¼£¬ÊÜÁ¦·ÖÎöÈçͼ![]()
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ
$mgsin¦È+f=m{a}_{2}^{\;}$
¿ÉµÃ${a}_{2}^{\;}=gsin¦È+¦Ìgcos¦È=10m/{s}_{\;}^{2}$
Îï¿éÑØ´«ËÍ´øÒÔ¼ÓËÙ¶È${a}_{2}^{\;}$×öÔȼÓËÙÖ±ÏßÔ˶¯£¬Éè¾¹ýʱ¼ä${t}_{2}^{\;}$Îï¿éµÄËÙ¶È´ïµ½u=10m/s
${t}_{2}^{\;}=\frac{u}{{a}_{2}^{\;}}=1s$
µÃ$x=\frac{1}{2}{a}_{2}^{\;}{t}_{2}^{2}=\frac{1}{2}¡Á10¡Á{1}_{\;}^{2}=5m$
Ö®ºó£¬Îï¿éËùÊÜĦ²ÁÁ¦±äÎªÑØ´«ËÍ´øÏòÉÏ£¬ÒÔ¼ÓËÙ¶È${a}_{1}^{\;}$¼ÌÐø×öÔȼÓËÙÖ±ÏßÔ˶¯
$l=u{t}_{3}^{\;}+\frac{1}{2}{a}_{1}^{\;}{t}_{3}^{2}$£¬µÃ${t}_{3}^{\;}=1s$£¨ÉáÈ¥¸ºÖµ£©
ËùÒÔÎï¿é´ÓAÔ˶¯µ½BËùÐèµÄʱ¼äΪ$t={t}_{2}^{\;}+{t}_{3}^{\;}=2s$
´ð£º£¨1£©Èô´«ËÍ´ø²»¶¯£¬Îï¿éÔ˶¯µÄ¼ÓËÙ¶È´óСΪ$2m/{s}_{\;}^{2}$£»
£¨2£©Èô´«ËÍ´øÒÔv=10m/sµÄËÙÂÊ˳ʱÕëת¶¯£¬Îï¿é´ÓAÔ˶¯µ½BËùÐèµÄʱ¼äΪ4s£»
£¨3£©Èô´«ËÍ´øÒÔv=10m/sµÄËÙÂÊÄæÊ±Õëת¶¯£¬Îï¿é´ÓAÔ˶¯µ½BËùÐèµÄʱ¼äΪ2s
µãÆÀ ·ÖÎöСÎï¿éµÄĦ²ÁÁ¦µÄ·½ÏòÊÇÄѵ㣬һ¶¨ÒªÅжÏÇåСÎï¿éÓë´«ËÍ´øÏà¶ÔÔ˶¯µÄ¹ØÏµ
| A£® | A¡¢DÁ½µãµçÊÆÏàµÈ | |
| B£® | B¡¢O¡¢CÈýµã±È½Ï£¬Oµã³¡Ç¿×îÇ¿ | |
| C£® | E¡¢O¡¢FÈýµã±È½Ï£¬Oµã³¡Ç¿×îÇ¿ | |
| D£® | Ò»µç×ÓÒÔv0µÄ³õËÙ¶ÈÑØÖд¹ÏßÏòOµãÔ˶¯£¬Ôòµç×Ó½«×öÔÈËÙÖ±ÏßÔ˶¯ |
| A£® | ÂåÂ××ÈÁ¦¶Ô´øµçÁ£×Ó×öÕý¹¦ | |
| B£® | ÂåÂ××ÈÁ¦²»¸Ä±ä´øµçÁ£×ӵ͝ÄÜ | |
| C£® | ÂåÂ××ÈÁ¦µÄ´óСÓëËÙ¶ÈÎÞ¹Ø | |
| D£® | ÂåÂ××ÈÁ¦²»¸Ä±ä´øµçÁ£×ÓµÄËÙ¶È·½Ïò |
| A£® | B£® | C£® | D£® |
| A£® | ta=tb=tc | B£® | ta£¼tb£¼tc | C£® | ta=tc£¼tb | D£® | ta£¾tb£¾tc |
| A£® | Á½ÖÖÇé¿öÏÂAµÄ¼ÓËÙ¶ÈÏàͬ | |
| B£® | Á½ÖÖÇé¿öÏÂBµÄ¼ÓËÙ¶ÈÏàͬ | |
| C£® | ͼ¼×ÖÐBµÄ¼ÓËÙ¶ÈÊÇËüÔÚͼÒÒÖеÄ2±¶ | |
| D£® | ͼÒÒÖÐÁ½»¬¿éµÄ¼ÓËÙ¶ÈÏàͬ |
| A£® | ÈôM¡¢mÁ½Îï¿éÓëË®Æ½Ãæ¶¼Êǹ⻬µÄ£¬ÄÇô£¬Îï¿éM¡¢m¼äµÄ×÷ÓÃÁ¦Îª$\frac{m}{M+m}$F | |
| B£® | ÈôM¡¢mÁ½Îï¿éÓëË®Æ½Ãæ¶¼Êǹ⻬µÄ£¬ÄÇô£¬Îï¿éM¡¢m¼äµÄ×÷ÓÃÁ¦Îª$\frac{M}{M+m}$F | |
| C£® | ÈôM¡¢mÁ½Îï¿éÓëË®Æ½ÃæµÄ¶¯Ä¦²ÁÒòÊý¾ùΪ¦Ì£¬Îï¿éM¡¢mÈÔÒ»ÆðÏòÓÒ×ö¼ÓËÙÔ˶¯£¬ÄÇô£¬Îï¿éM¡¢m¼äµÄÏ໥×÷ÓÃÁ¦Îª$\frac{M}{M+m}$F+¦ÌMg | |
| D£® | ÈôM¡¢mÁ½Îï¿éÓëË®Æ½ÃæµÄ¶¯Ä¦²ÁÒòÊý¾ùΪ¦Ì£¬Îï¿éM¡¢mÈÔÒ»ÆðÏòÓÒ×ö¼ÓËÙÔ˶¯£¬ÄÇô£¬Îï¿éM¡¢m¼äµÄÏ໥×÷ÓÃÁ¦Îª$\frac{M}{M+m}$F |