ÌâÄ¿ÄÚÈÝ
20£®£¨1£©»¬¿éÔÚCµãµÄËÙ¶È´óСvC£»
£¨2£©»¬¿éÔÚBµãµÄËÙ¶È´óСvB£»
£¨3£©A¡¢BÁ½µã¼äµÄ¸ß¶È²îh£®
·ÖÎö £¨1£©¶Ô»¬¿éÔÚCµãÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨Âɼ´¿É£»
£¨2£©¶Ô»¬¿é´ÓBµ½CÓ¦ÓûúеÄÜÊØºã¼´¿ÉÇóµÃÔÚB´¦µÄËÙ¶È£»
£¨3£©¶Ô»¬¿é´ÓAµ½BÓ¦Óö¯Äܶ¨Àí¼´¿É£®
½â´ð ½â£º£¨1£©Í¨¹ý×î¸ßµãCʱ¹ìµÀ¶Ô»¬¿éµÄµ¯Á¦ÎªÁ㣬¶Ô»¬¿éÔÚCµãÓ¦ÓÃÅ£¶ÙµÚ¶þ¶¨Âɿɵãº$mg=\frac{m{{v}_{C}}^{2}}{R}$£¬ËùÒÔ£¬${v}_{C}=\sqrt{gR}=2m/s$£»
£¨2£©»¬¿éÔڹ⻬Բ¹ìµÀÉÏÔ˶¯£¬»úеÄÜÊØºã£¬¹ÊÓУº$\frac{1}{2}m{{v}_{B}}^{2}=\frac{1}{2}m{{v}_{C}}^{2}+mgR£¨1+cos37¡ã£©=2.3mgR$£¬ËùÒÔ£¬${v}_{B}=\sqrt{4.6gR}=\frac{2\sqrt{115}}{5}m/s¡Ö4.3m/s$£»
£¨3£©»¬¿é´ÓAµ½BÖ»ÓÐÖØÁ¦¡¢Ä¦²ÁÁ¦×ö¹¦£¬¹ÊÓɶ¯Äܶ¨Àí¿ÉµÃ£º$mgh-¦Ìmgcos37¡ã•\frac{h}{sin37¡ã}=\frac{1}{2}m{{v}_{B}}^{2}$£¬ËùÒÔ£¬$h=\frac{{{v}_{B}}^{2}}{2g£¨1-¦Ìcot37¡ã£©}=1.38m$£»
´ð£º£¨1£©»¬¿éÔÚCµãµÄËÙ¶È´óСvCΪ2m/s£»
£¨2£©»¬¿éÔÚBµãµÄËÙ¶È´óСvBΪ4.3m/s£»
£¨3£©A¡¢BÁ½µã¼äµÄ¸ß¶È²îhΪ1.38m£®
µãÆÀ ¾µäÁ¦Ñ§ÎÊÌâÒ»°ãÏȶÔÎïÌå½øÐÐÊÜÁ¦·ÖÎö£¬ÇóµÃºÏÍâÁ¦¼°Ô˶¯¹ý³Ì×ö¹¦Çé¿ö£¬È»ºó¸ù¾ÝÅ£¶Ù¶¨ÂÉ¡¢¶¯Äܶ¨Àí¼°¼¸ºÎ¹ØÏµÇó½â£®
| A£® | F1£¾F2£¬·½ÏòÏàͬ | B£® | F1£¼F2£¬·½ÏòÏà·´ | C£® | F1=F2£¬·½ÏòÏàͬ | D£® | F1=F2£¬·½ÏòÏà·´ |
| A£® | °®Òò˹̹ | B£® | Å£¶Ù | C£® | °ÂË¹ÌØ | D£® | °²Åà |
| A£® | EA£¾EB | B£® | EA£¼EB | C£® | EA=EB | D£® | ÎÞ·¨ÅÐ¶Ï |
| A£® | ¾²Ö¹ÔÚˮƽµØÃæÉϵı×Ó | B£® | ×öƽÅ×Ô˶¯µÄСÇò | ||
| C£® | ×ö×ÔÓÉÂäÌåÔ˶¯µÄʯ¿é | D£® | ÑØÐ±Ãæ¼ÓËÙÏ»¬µÄľ¿é |
| A£® | Á¦ÊÇʹÎïÌåÎ»ÒÆÔö´óµÄÔÒò | B£® | Á¦ÊÇά³ÖÎïÌåÔ˶¯µÄÔÒò | ||
| C£® | Á¦ÊÇʹÎïÌå¹ßÐԸıäµÄÔÒò | D£® | Á¦ÊǸıäÎïÌåÔ˶¯×´Ì¬µÄÔÒò |