题目内容
如图所示,一小球从A点以某一水平向右的初速度出发,沿水平直线轨道运动到B点后,进入半径R=10cm的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C点运动,C点右侧有一壕沟,C、D两点的竖直高度h=0.8cm,水平距离s=1.2cm,水平轨道AB长为L1=1m,BC长为L2=3m.小球与水平轨道间的动摩擦因数u=0.2,重力加速度g=10m/s2,重力加速度g=10m/s2,则:
![]()
(1)若小球恰能通过圆形轨道的最高点,求小球在A点的初速度;
(2)若小球既能通过圆形轨道的最高点,又不能掉进壕沟,求小球在A点的初速度的范围是多少?
练习册系列答案
相关题目
某同学在“用单摆测重力加速度”的实验中进行了如下的操作;(1)某同学用秒表测得单摆完成40次全振动的时间如图所示,则该单摆的周期T=______s(结果保留三位有效数字)、
![]()
(2)测量出多组周期T、摆长L数值后,画出T2﹣L图象,此图线斜率的物理意义是
A.g | B. | C. | D. |
(3)该小组的另一同学没有使用游标卡尺也测出了重力加速度、他采用的方法是:先测出一摆线较长的单摆的振动周期T1,然后把摆线缩短适当的长度△L,再测出其振动周期T2、用该同学测出的物理量表达重力加速度为g=_____________