题目内容

如图所示,倾角为30°的足够长光滑斜面下端与一足够长光滑水平面相接,连接处用一光滑小圆弧过渡,斜面上距水平面高度分别为h1=5m和h2=0.2m的两点上,各静置一小球A和B。某时刻由静止开始释放A球,经过一段时间t后,再由静止开始释放B球。g取10m/s2,求:

(1)为了保证A、B两球不会在斜面上相碰,t最长不能超过多少?

(2)若A球从斜面上h1高度处自由下滑的同时,B球受到恒定外力作用从C点以加速度a由静止开始向右运动,则a为多大时,A球会追上B球?

(1)两球在斜面上下滑的加速度相同,设加速度为a,根据牛顿第二定律有:

mgsin30º=ma ,     解得:a=5m/s2                             (1分)

设A、B两球下滑到斜面底端所用时间分别为t1和t2,则:

 ,    ,    解得:t1=2s,t2=0.4s            (2分)

为了保证A、B两球不会在斜面上相碰,t最长不能超过 t=t1-t2=1.6s         (2分)

(2)设A球在水平面上再经t0追上B球,则:,  (3分)

A球要追上B球,方程必须有解,,解得,即(2分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网