ÌâÄ¿ÄÚÈÝ
3£®| A£® | Á½Îï¿é´ï×î´óËÙ¶ÈʱµÄ¸ß¶ÈÏàͬ | B£® | ÉÏÉýµÄ×î´ó¸ß¶È²»Í¬ | ||
| C£® | ×î´ó¼ÓËÙ¶ÈÏàͬ | D£® | ×î´óÖØÁ¦ÊÆÄܲ»Í¬ |
·ÖÎö ËÙ¶È×î´óÊ±ÖØÁ¦Ó뵯»ÉµÄµ¯Á¦Æ½ºâ£¬ÁÐʽ·ÖÎö´Ëʱ¸ß¶ÈµÄ¹ØÏµ£®Á½µ¯»ÉѹËõÁ¿Ïàͬ£¬Òò´ËÔö¼ÓµÄµ¯ÐÔÊÆÄÜÏàͬ£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉ¿ÉÃ÷È·ÖØÁ¦ÊÆÄܼ°¶¯ÄܵĹØÏµ£¬×¢Òâ·ÖÎöÁ½ÎïÌåÖÊÁ¿²»Í¬µÄÓ°Ï죮
½â´ð ½â£ºA¡¢ËÙ¶È×î´óʱ£¬ÓÐ kx=mg£¬Ôòµ¯»ÉµÄѹËõÁ¿ x=$\frac{mg}{k}$£¬kÏàͬ£¬m²»Í¬£¬Ôòx²»Í¬£¬ËùÒÔ×î´óËÙ¶ÈʱµÄ¸ß¶È²»Í¬£¬¹ÊA´íÎó£®
BD¡¢ÓÉÓÚ¿ªÊ¼Ê±µ¯»ÉµÄѹËõÁ¿Ïàͬ£¬Ôòµ¯»ÉµÄµ¯ÐÔÊÆÄÜÏàͬ£¬ÓÉÎï¿éÓ뵯»ÉϵͳµÄ»úеÄÜÊØºã¶¨ÂÉ¿ÉÖª£¬ÖØÁ¦ÊÆÄܵÄÔö¼ÓÁ¿Ò»¶¨µÈÓÚµ¯ÐÔÊÆÄÜ£»¹ÊÖØÁ¦ÊÆÄܵı仯Á¿Ïàͬ£¬ÔÀ´µÄÖØÁ¦ÊÆÄܲ»Í¬£¬Ôò×î´óÖØÁ¦ÊÆÄܲ»Í¬£®µ«ÓÉÓÚÎïÌåµÄÖÊÁ¿²»Í¬£¬¹ÊÉÏÉýµÄ×î´ó¸ß¶È²»Í¬£»¹ÊBÕýÈ·£¬DÕýÈ·£®
C¡¢¸Õ³·È¥ÍâÁ¦Ê±¼ÓËÙ¶È×î´ó£¬ÓÉa=$\frac{F}{m}$£¬ÖªÔÀ´µ¯»ÉµÄµ¯Á¦Ïàͬ£¬ÍâÁ¦FÏàͬ£¬¶øÎïÌåµÄÖÊÁ¿²»Í¬£¬¹Ê×î´ó¼ÓËٶȲ»Í¬£®¹ÊC´íÎó£®
¹ÊÑ¡£ºBD£®
µãÆÀ ±¾Ì⿼²é»úеÄÜÊØºã¶¨Âɼ°Å£¶ÙµÚ¶þ¶¨ÂÉ£¬Òª×¢ÒâÕýÈ·Ã÷È·µ¯»ÉµÄµ¯ÐÔÊÆÄÜÈ¡¾öÓÚµ¯»ÉµÄÐαäÁ¿¼°¾¢¶ÈϵÊý£®
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |
| A£® | $\frac{F}{£¨\sqrt{2}-1£©L}$ | B£® | $\frac{F}{2£¨\sqrt{2}-1£©L}$ | C£® | $\frac{F}{£¨\sqrt{5}-1£©L}$ | D£® | $\frac{F}{2£¨\sqrt{5}-1£©L}$ |
| A£® | ¸Ã²¨µÄÖÜÆÚΪ12s | |
| B£® | x=2m´¦µÄÖʵãÔÚÆ½ºâλÖÃÏò+y·½ÏòÕñ¶¯Ê±£¬x=8m´¦µÄÖʵãÔÚ²¨·å | |
| C£® | ÔÚ0¡«4sÄÚx=2m´¦ºÍx=8m´¦µÄÖʵãͨ¹ýµÄ·³Ì¾ùΪ6cm | |
| D£® | ¸Ã²¨µÄ²¨³¤¿ÉÄÜΪ8m | |
| E£® | ¸Ã²¨µÄ´«²¥ËÙ¶È¿ÉÄÜΪ2m/s |