ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÊµÑéÖÐÒѾ²âµÃÉÏÊöÎïÀíÁ¿ÖеĦÁ¡¢L¡¢s£¬ÎªÁËÑéÖ¤Á½ÇòÅöײ¹ý³Ì¶¯Á¿Êغ㣬»¹Ó¦¸Ã²âÁ¿µÄÎïÀíÁ¿ÓÐСÇò1ÖÊÁ¿m1£¬Ð¡Çò2ÖÊÁ¿m2£¬×ÀÃæ¸ß¶Èh£¬OCÓëOB¼Ð½Ç£®
£¨2£©ÇëÓòâµÃµÄÎïÀíÁ¿½áºÏÒÑÖªÎïÀíÁ¿À´±íʾÅöײǰСÇò1µÄ¶¯Á¿£ºp1=m1$\sqrt{2gL£¨1-cos¦Á£©}$£»ÅöײºóСÇò2µÄ¶¯Á¿p2¡ä=m2s•$\sqrt{\frac{g}{2h}}$£®
·ÖÎö AÇòϰڹý³Ì»úеÄÜÊØºã£¬¸ù¾ÝÊØºã¶¨ÂÉÁÐʽÇó×îµÍµãËÙ¶È£»ÇòAÉϰڹý³Ì»úеÄÜÔÙ´ÎÊØºã£¬¿ÉÇó½âÅöײºóËÙ¶È£»ÅöײºóСÇòB×öƽÅ×Ô˶¯£¬¸ù¾ÝƽÅ×Ô˶¯µÄ·ÖÎ»ÒÆ¹«Ê½Çó½âÅöײºóBÇòµÄËÙ¶È£¬È»ºóÑéÖ¤¶¯Á¿ÊÇ·ñÊØºã¼´¿É£®
½â´ð ½â£º£¨1£©ÎªÁËÑéÖ¤Á½ÇòÅöײ¹ý³Ì¶¯Á¿Êغ㣬ÐèÒª²âÁ¿Á½Ð¡ÇòµÄÖÊÁ¿£¬Ð¡Çò1ÖÊÁ¿m1£¬Ð¡Çò2ÖÊÁ¿m2£¬Ð¡Çò1ÅöײǰºóµÄËÙ¶È¿ÉÒÔ¸ù¾Ý»úеÄÜÊØºã¶¨Âɲâ³ö£¬ËùÒÔ»¹ÐèÒª²âÁ¿OCÓëOB¼Ð½Ç£¬ÐèҪͨ¹ýƽÅ×Ô˶¯²âÁ¿³öСÇò2ÅöºóµÄËÙ¶È£¬ÐèÒª²âÁ¿Ë®Æ½Î»ÒÆSºÍ×ÀÃæµÄ¸ß¶Èh£®
£¨2£©Ð¡Çò´ÓA´¦Ï°ڹý³ÌÖ»ÓÐÖØÁ¦×ö¹¦£¬»úеÄÜÊØºã£¬ÓÉ»úеÄÜÊØºã¶¨Âɵãº
m1gL£¨1-cos¦Á£©=$\frac{1}{2}$m1v12£¬½âµÃ£ºv1=$\sqrt{2gL£¨1-cos¦Á£©}$£®ÔòP1=m1v1=m1$\sqrt{2gL£¨1-cos¦Á£©}$£®
СÇòAÓëСÇòBÅöײºó¼ÌÐøÔ˶¯£¬ÔÚAÅöºóµ½´ï×î×ó¶Ë¹ý³ÌÖУ¬»úеÄÜÔÙ´ÎÊØºã£¬
ÓÉ»úеÄÜÊØºã¶¨Âɵãº-m1gL£¨1-cos¦Â£©=0-$\frac{1}{2}$mv1¡ä2£¬½âµÃ£ºv1¡ä=$\sqrt{2gL£¨1-cos¦È£©}$£¬ÔòP1¡ä=m1$\sqrt{2gL£¨1-cos¦È£©}$£®
ÅöǰСÇòB¾²Ö¹£¬ÔòPB=0£»
ÅöײºóBÇò×öƽÅ×Ô˶¯£¬Ë®Æ½·½Ïò£ºS=v2¡ät£¬ÊúÖ±·½Ïò h=$\frac{1}{2}$gt2£¬ÁªÁ¢½âµÃv¡ä2=s•$\sqrt{\frac{g}{2h}}$£¬ÔòÅöºóBÇòµÄ¶¯Á¿P2¡ä=m2s•$\sqrt{\frac{g}{2h}}$£®
¹Ê´ð°¸Îª£º£¨1£©Ð¡Çò1ÖÊÁ¿m1£¬Ð¡Çò2ÖÊÁ¿m2£¬×ÀÃæ¸ß¶Èh£¬OCÓëOB¼Ð½Ç£®
£¨2£©m1$\sqrt{2gL£¨1-cos¦Á£©}$£¬m2s•$\sqrt{\frac{g}{2h}}$
µãÆÀ ±¾Ìâ½âÌâµÄ¹Ø¼üÊÇÒªÃ÷È·Á½Ð¡ÇòµÄÔ˶¯¹ý³ÌÒÔ¼°¹ý³ÌÖлúеÄܺÎÊ±ÊØºã£¬¶¯Á¿ºÎÊ±ÊØºã£®Ã÷È·»úеÄÜÊØºã¼°¶¯Á¿ÊغãµÄÌõ¼þÒÔ¼°Ó¦Óã®
| A£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{r}{R}$ | B£® | $\frac{{a}_{1}}{{a}_{2}}$=$\frac{{R}^{2}}{{r}^{2}}$ | C£® | $\frac{{v}_{1}}{{v}_{2}}$=$\frac{r}{R}$ | D£® | $\frac{{v}_{1}}{{v}_{2}}$=$\sqrt{\frac{R}{r}}$ |
| A£® | ÏȵÈÈݽµÑ¹£¬ÔÙµÈѹѹËõ | B£® | ÏȵÈѹѹËõ£¬ÔÙµÈÈݽµÑ¹ | ||
| C£® | ÏȵÈÈÝÉýѹ£¬ÔÙµÈѹÅòÕÍ | D£® | ÏȵÈѹÅòÕÍ£¬ÔÙµÈÈݽµÑ¹ |
| A£® | ͼÏß1ÊÇÈÈÃôµç×èµÄͼÏߣ¬ËüÊÇÓýðÊô²ÄÁÏÖÆ³ÉµÄ | |
| B£® | ͼÏß2ÊÇÈÈÃôµç×èµÄͼÏߣ¬ËüÊÇÓð뵼Ìå²ÄÁÏÖÆ³ÉµÄ | |
| C£® | ͼÏß1µÄ²ÄÁÏ»¯Ñ§Îȶ¨ÐԺᢲâη¶Î§´ó¡¢ÁéÃô¶È¸ß | |
| D£® | ͼÏß2µÄ²ÄÁÏ»¯Ñ§Îȶ¨ÐԲ²âη¶Î§Ð¡¡¢ÁéÃô¶È¸ß |