ÌâÄ¿ÄÚÈÝ
4£®ÈçͼaËùʾ£¬A¡¢BΪ¹â»¬Ë®Æ½µØÃæÉÏÏà¾àdµÄÁ½µ²°å£¬ÔÚA¡¢BµÄÖ®¼äÓÐÒ»ÖÊÁ¿ÎªmµÄÖʵãP£®ÈôÔÚPÉϼÓÉÏÈçͼbËùÊ¾ËæÊ±¼ät±ä»¯µÄ×÷ÓÃÁ¦F£¨È¡ÏòÓÒΪFµÄÕý·½Ïò£©£¬ÔÚt=0ʱÖʵãPλÓÚA¡¢B¼äµÄÖе㴦ÇÒ³õËÙΪ0£®ÒÑÖªÖʵãPÄÜÔÚA¡¢BÖ®¼äÒÔ×î´óµÄ·ù¶ÈÔ˶¯¶ø²»ÓëÁ½°åÏàÅö£¬ÇÒÖʵãP¿ªÊ¼´ÓÖеãÔ˶¯µ½×îÓұߣ¬¼°ÒÔºóÿ´Î´Ó×î×ó±ßµ½×îÓұ߻ò´Ó×îÓұߵ½×î×ó±ßµÄ¹ý³ÌÖУ¬Á¦FÖ»¸Ä±äÒ»´Î£®£¨1£©ÇóÖʵãP´ÓABµÄÖеã´Ó¾²Ö¹¿ªÊ¼³ö·¢µÚÒ»´ÎÔ˶¯µ½×îÓÒµãµÄʱ¼ät£»
£¨2£©ÇóͼbÖÐʱ¿Ìt2¡¢t3ºÍtnµÄ±í´ïʽ£®
·ÖÎö £¨1£©Öʵã´ÓB°åÏòA°åÏÈ×ö¼ÓËÙÔ˶¯£¬ºó×ö¼õËÙÔ˶¯£¬Î»ÒÆÖ®ºÍµÈÓÚ$\frac{1}{2}$d£¬ÓÉËٶȹ«Ê½ºÍÎ»ÒÆ¹«Ê½ÁÐʽÇó½âtµÄ±í´ïʽ£®
£¨2£©Ñ°ÕÒÿ´Î¼ÓËٺͼõËٵĹæÂÉ£¬µÃ³ötnµÄ±í´ïʽ£®
½â´ð ½â£º£¨1£©ÖʵãÔ˶¯¼ÓËÙ¶È´óСa=$\frac{F}{m}$=g
ÔÚt=0ʱ£¬P×ÔA¡¢B¼äµÄÖеãÏòÓÒ×÷³õËÙΪ0µÄÔȼÓËÙÔ˶¯£¬¼ÓËÙ¶ÈΪg£®¾¹ýʱ¼ät1£¬PµÄËٶȱäΪv1£¬´Ëʱ¼ÓËٶȱäΪÏò×ó£¬PÏòÓÒ×÷ÔȼõËÙÔ˶¯£¬ÔÙ¾¹ýt1£¬PÕýºÃ´ïµ½B°åÇÒËٶȱäΪ0£®¹ÊÓÐ
v1=g t1
0=v1-gt1
$\frac{1}{2}$d=$\frac{1}{2}$gt${\;}_{1}^{2}$+v1t1-$\frac{1}{2}$gt${\;}_{1}^{2}$
ÓÉÒÔÉϸ÷ʽµÃt1=t1=$\frac{\sqrt{2}}{2}$$\sqrt{\frac{d}{g}}$
µÃt=t1+t1=$\sqrt{2}$$\sqrt{\frac{d}{g}}$
£¨2£©PÓÉB°å´¦Ïò×ó×öÔȼÓËÙÔ˶¯£¬¾¹ýʱ¼ät2£¬PµÄËٶȱäΪv2£¬·½ÏòÏò×ó£®´Ëʱ¼ÓËٶȱäΪÏòÓÒ£¬PÏò×ó×÷ÔȼõËÙÔ˶¯£¬ÔÙ¾¹ýt3£¬PÕýºÃ´ïµ½A°åÇÒËٶȱäΪ0£®¹ÊÓÐ
v2=gt2
0=v2-gt3
d=$\frac{1}{2}$gt${\;}_{2}^{2}$+v2t3-$\frac{1}{2}$gt${\;}_{3}^{2}$
ÓÉÒÔÉϸ÷ʽµÃ t2=t3=$\sqrt{\frac{d}{g}}$
Ôò t2=t1+t1+t2=£¨$\sqrt{2}$+1£©$\sqrt{\frac{d}{g}}$
ÖʵãPÓÖÓÉA°åÏòÓÒ×÷ÔȼÓËÙÔ˶¯£¬¾¹ýʱ¼ät4£¬ËٶȱäΪv3£¬´Ëʱ¼ÓËٶȱäΪÏò×ó£¬PÏòÓÒ×÷ÔȼõËÙÔ˶¯£¬¾¹ýt5£¬PÕýºÃ´ïµ½B°åÇÒËٶȱäΪ0£®¹ÊÓÐ
v3=gt4
0=v3-gt5
d=$\frac{1}{2}$gt${\;}_{4}^{2}$+v3t5-$\frac{1}{2}$gt${\;}_{5}^{2}$
ÓÉÉϵà t4=t5=$\sqrt{\frac{d}{g}}$
t3=t2+t3+t4=£¨$\sqrt{2}$+3£©$\sqrt{\frac{d}{g}}$
¸ù¾ÝÉÏÃæ·ÖÎö£¬³ýµÚÒ»´ÎP´ÓÖеãÔ˶¯µ½×îÓÒµãÍ⣬ÒÔºóÿ´Î´Ó´Ó×î×ó±ßµ½×îÓұ߻ò´Ó×îÓұߵ½×î×ó±ßµÄÔ˶¯£¬¶¼ÊÇÏÈ×öÔȼÓËÙÔ˶¯£¬ÔÙ×öÔȼõËÙÔ˶¯£¬ÇÒÿ´ÎÔȼÓËÙÔ˶¯ºÍÔȼõËÙÔ˶¯µÄʱ¼äÏàµÈ£¬¼´
t2=t3=t4=t5=¡=$\sqrt{\frac{d}{g}}$
Ôòtn=t+£¨2n-3£©t2 £¨n¡Ý2£©
µÃtn=£¨$\sqrt{2}$+2n-3$\sqrt{\frac{d}{g}}$ £¨n¡Ý2£©
´ð£º£¨1£©ÖʵãP´ÓABµÄÖеã´Ó¾²Ö¹¿ªÊ¼³ö·¢µÚÒ»´ÎÔ˶¯µ½×îÓÒµãµÄʱ¼ätΪ$\sqrt{2}\sqrt{\frac{d}{g}}$£»
£¨2£©Í¼bÖÐʱ¿Ì${t}_{2}^{\;}¡¢{t}_{3}^{\;}¡¢{t}_{n}^{\;}$µÄ±í´ïʽ${t}_{2}^{\;}=\sqrt{\frac{d}{g}}$¡¢${t}_{3}^{\;}=£¨\sqrt{2}+3£©\sqrt{\frac{d}{g}}$¡¢${t}_{n}^{\;}=£¨\sqrt{2}+2n-3£©\sqrt{\frac{d}{g}}$£®
µãÆÀ ±¾ÌâÊÇÖʵãÔÚÖÜÆÚÐԱ仯µÄ×÷ÓÃÁ¦×÷ÓÃϵÄÔ˶¯ÎÊÌ⣬·ÖÎöÖʵãµÄÔ˶¯Çé¿ö¡¢°ÑÎÕÔ˶¯¹æÂÉÊǹؼü£®
| A£® | ÆøÌåÈç¹ûʧȥÁËÈÝÆ÷µÄÔ¼Êø¾Í»áÉ¢¿ª£¬ÕâÊÇÒòÎªÆøÌå·Ö×ÓÖ®¼ä´æÔÚ³âÁ¦µÄÔµ¹Ê | |
| B£® | µ±·Ö×Ó¼äµÄÒýÁ¦ºÍ³âÁ¦Æ½ºâʱ£¬·Ö×ÓÊÆÄÜ×îС | |
| C£® | Ò»¶¨Á¿100¡æµÄË®±ä³É100¡æµÄË®ÕôÆø£¬Æä·Ö×ÓÖ®¼äµÄÊÆÄÜÔö¼Ó | |
| D£® | Ò»¶¨Á¿µÄÆøÌ壬ÔÚѹǿ²»±äʱ£¬·Ö×ÓÿÃë¶ÔÆ÷±Úµ¥Î»Ãæ»ýƽ¾ùÅöײ´ÎÊýËæ×ÅζȽµµÍ¶ø¼õÉÙ |
| A£® | ÏàÁÚÃ÷ÎÆ»ò°µÌõÎÆÖ®¼äµÄ¾àÀë²»ÏàµÈ | |
| B£® | Óúì¹â×öʵÑé±ÈÓÃ×Ϲâ×öʵÑéµÃµ½µÄÏàÁÚÃ÷ÌõÎÆ£¨»ò°µÌõÎÆ£©Ö®¼äµÄ¼ä¸ô´ó | |
| C£® | ÆÁÉÏijµãµ½Ë«·ìµÄ¾àÀëÖ®²îµÈÓÚ°ë¸ö²¨³¤µÄÕûÊý±¶Ê±£¬Õâµã½«³öÏÖ°µÌõÎÆ | |
| D£® | Èç¹û¸ÄÓð׹â×öʵÑ飬ÏàÁÚÌõÎÆÖ®¼äµÄ¾àÀëÊÇÏàµÈµÄ |
| A£® | Ê©¼ÓÀÁ¦Ç°£¬Q¸øPµÄÁ¦´óСΪmgsin¦È | |
| B£® | Ê©¼ÓÀÁ¦Ç°£¬µ¯»ÉµÄÐαäÁ¿Îª$\frac{2mgsin¦È}{k}$ | |
| C£® | µ½t1ʱ¿Ì£¬µ¯»ÉÊͷŵĵ¯ÐÔÊÆÄÜΪ$\frac{1}{2}$mv12 | |
| D£® | t2ʱ¿Ìµ¯»É»Ö¸´µ½Ô³¤£¬Îï¿éQ´ïµ½ËÙ¶È×î´óÖµ |
¾¹ý¶à´Î×Ðϸ¹Û²ìºÍ·´¸´²âÁ¿£¬Ëû·¢ÏÖµçÌÝÆô¶¯ºóµÄÔ˶¯ËÙ¶È·ûºÏÈçͼËùʾµÄ¹æÂÉ£¬Ëû¾Í¸ù¾ÝÕâÒ»ÌØµãÔÚµçÌÝÄÚÓĄ̃³Ó¡¢ÖØÎïºÍÍ£±í²âÁ¿Õâ×ùÂ¥·¿µÄ¸ß¶È£®Ëû½«Ì¨³Ó·ÅÔÚµçÌÝÄÚ£¬½«ÖØÎï·ÅÔŲ́³ÓµÄÍÐÅÌÉÏ£¬µçÌÝ´ÓµÚÒ»²ã¿ªÊ¼Æô¶¯£¬¾¹ý²»¼ä¶ÏµÄÔËÐУ¬×îºóÍ£ÔÚ×î¸ß²ã£®ÔÚÕû¸ö¹ý³ÌÖУ¬Ëû¼Ç¼ÁĘ̈³ÓÖв»Í¬Ê±¼ä¶ÎÄÚµÄʾÊý£¬¼Ç¼µÄÊý¾ÝÈç±íËùʾ£®µ«ÓÉÓÚ0¡«3.0s¶ÎµÄʱ¼äÌ«¶Ì£¬ËûûÓÐÀ´µÃ¼°½«Ì¨³ÓµÄʾÊý¼Ç¼ÏÂÀ´£¬¼ÙÉèÔÚÿ¸öʱ¼ä¶ÎÄŲ́³ÓµÄʾÊý¶¼ÊÇÎȶ¨µÄ£¬ÖØÁ¦¼ÓËÙ¶ÈgÈ¡10m/s2£®
£¨1£©µçÌÝÔÚ0¡«3.0sʱ¼ä¶ÎÄŲ́³ÓµÄʾÊýÓ¦¸ÃÊǶàÉÙ£¿
£¨2£©¸ù¾Ý²âÁ¿µÄÊý¾Ý¼ÆËã¸ÃÂ¥·¿Ã¿Ò»²ãµÄƽ¾ù¸ß¶È£®
| ʱ¼ä/s | µçÌÝÆô¶¯Ç° | 0¡«3.0 | 3.0¡«13.0 | 13.0¡«19.0 | 19.0ÒÔºó |
| ̨³ÓʾÊý/kg | 5.0 | 5.0 | 4.6 | 5.0 |