题目内容
10.用气垫导轨和数字计时器更能精确地测量物体的瞬时速度.滑块在牵引力作用下先后通过两个光电门,配套的数字毫秒计记录了遮光板通过第一个光电门的时间为△t1=0.20s,通过第二个光电门的时间△t2=0.10s,已知遮光板的宽度d为1.0cm,则滑块通过第一个光电门和第二个光电门的速度大小分别为V1=0.05m/s,V2=0.10m/s.分析 光电门测量滑块瞬时速度的原理是遮光条通过光电门的速度可以用平均速度代替即v=$\frac{d}{v}$
解答 解:由于遮光板通过光电门的时间很短,可以认为滑块在这很短的时间内做匀速运动,也就是说用这段时间内的平均速度代表瞬时速度.
又$\overline{v}=\frac{x}{t}$得到:
${v}_{1}^{\;}=\frac{d}{△{t}_{1}^{\;}}=\frac{1.0×1{0}_{\;}^{-2}}{0.2}m/s=0.05m/s$,
${v}_{2}^{\;}=\frac{d}{△{t}_{2}^{\;}}=\frac{1.0×1{0}_{\;}^{-2}}{0.10}m/s=0.10m/s$,
故答案为:0.05 0.10
点评 本题应掌握光电门测量滑块瞬时速度的原理,注意计算过程中单位的换算
练习册系列答案
相关题目
20.
如图所示,有一圆形匀强磁场区域,O为圆心,磁场方向垂直纸面向里,一个正电子与一个负电子,以不同的速率沿着PO方向进入磁场,在磁场中运动轨迹分别如图中a、b所示,不计电子之间的相互作用及重力,下列判断正确的是( )
| A. | 沿轨迹a运动的为负电子 | B. | 沿轨迹b运动的速率较大 | ||
| C. | 沿轨迹a运动的加速度较大 | D. | 沿轨迹b运动的时间较长 |
1.
电势φ与坐标x的关系用图中曲线表示,图中斜线为该曲线过点(0.15,3)的切线.现有一质量为0.20kg,电荷量为+2.0×10-8C的滑块P(可视作质点),从x=0.10m处由静止释放,其与水平面的动摩擦因数为0.02.取重力加速度g=10m/s2.则下列说法中正确的是( )
| A. | 滑块运动的加速度先逐渐减小后又逐渐变大 | |
| B. | 滑块运动的速度先减小后增大 | |
| C. | x=0.15m处的场强大小为2.0×106N/C | |
| D. | 滑块运动的最大速度约为0.1m/s |
5.a、b两物体从同一位置沿同一直线运动,它们的v-t图象如图所示,下列说法正确的是( )
| A. | a、b加速时,物体a的加速度大于物体b的加速度 | |
| B. | 20 s时,a、b两物体相距400m | |
| C. | 60 s时,物体a在物体b的前方 | |
| D. | 40 s时,a、b两物体速度相等,相距200 m |
2.
一个物体沿直线运动,从t=0时刻开始,物体的$\frac{x}{t}$-t的图象如图所示,图线与纵坐标轴的交点分别为0.5m/s和-1s,由此可知( )
| A. | 物体做变加速直线运动 | B. | 物体的初速度的大小为0.5 m/s | ||
| C. | 物体的加速度的大小为1 m/s2 | D. | 物体的加速度的大小为0.5 m/s2 |
19.
如图所示,轮O1、O3固定在同一轮轴上,轮O1、O2用皮带连接且不打滑.在O1、O2、O3三个轮的边缘各取一点A、B、C,已知三个轮的半径比r1:r2:r3=2:1:1,当转轴匀速转动时,下列说法中正确的是( )
| A. | A、B、C三点的线速度之比为2:2:1 | |
| B. | A、B、C三点的角速度之比为1:2:1 | |
| C. | A、B、C三点的向心加速度之比为2:4:1 | |
| D. | A、B、C三点的周期之比为1:2:1 |
20.
如图实线是电场线,虚线是一带电粒子从电场中的a点到b点的运动径迹,不计粒子所受重力,则( )
| A. | 粒子一定带正电 | |
| B. | 粒子在a点的加速度大于b点的加速度 | |
| C. | 粒子一定带负电 | |
| D. | 粒子在a点的加速度小于b点的加速度 |