ÌâÄ¿ÄÚÈÝ
12£®£¨1£©¸Õ¿ªÊ¼Ô˶¯Ê±£¬Ä¾ÏäMºÍСÎï¿émµÄ¼ÓËÙ¶È
£¨2£©Ð¡Îï¿émÀ뿪ľÏäMʱµÄËÙ¶È
£¨3£©Ð¡Îï¿ém´Ó¿ªÊ¼Ô˶¯µ½ÂäµØÊ±£¬Ä¾ÏäMÔ˶¯µÄÎ»ÒÆ£®
·ÖÎö ÒÔmΪÑо¿¶ÔÏó½øÐзÖÎö£¬mÔÚ³µ°åÉϵÄˮƽ·½ÏòÖ»ÊÜÒ»¸öĦ²ÁÁ¦fµÄ×÷Óã¬ËùÒÔm´ÓAµãÔ˶¯µ½Bµã£¬×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɼ°Ô˶¯Ñ§»ù±¾¹«Ê½Çó³öÔ˶¯µ½BµãµÄËÙ¶È¡¢Î»ÒƵȣ¬ÒÔС³µÎªÑо¿¶ÔÏ󣬸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öƽ°å³µµÄ¼ÓËÙ¶È£»¸ù¾ÝÔ˶¯Ñ§»ù±¾¹«Ê½Çó³öÎ»ÒÆ£®
½â´ð ½â£º£¨1£©ÎïÌå¼äµÄĦ²ÁÁ¦f=¦Ìmg=15N£¬
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£ºf=mam£¬F-f=MaM
½âµÃ£º${a_m}=3m/{s^2}$£¬aM=5.5m/s2£»
£¨2£©ÓÉÔ˶¯Ñ§¹«Ê½£º$\frac{1}{2}{a_M}{t^2}-\frac{1}{2}{a_m}{t^2}={x_0}$£¬
½âµÃ£ºt=$\sqrt{10}$s£¬
ËùÒÔvm=amt=3$\sqrt{10}$m/s£¬vM=aMt=$\frac{11}{2}\sqrt{10}$m/s
£¨3£©Îï¿éÀ뿪ľÏäºóÂäµØÊ±¼ät'£¬
$h=\frac{1}{2}gt{'^2}$£¬
½âµÃ£ºt'=0.5s£¬
À뿪Îï¿éºóľÏäµÄ¼ÓËÙ¶ÈaM'£¬
Ôò£ºF=MaM'£¬
½âµÃ£º${a_M}'=5.5m/{s^2}$£¬
ľÏäµÄÎ»ÒÆ${s_M}=\frac{1}{2}{a_M}{t^2}+{v_M}t'+\frac{1}{2}{a_M}'t{'^2}=12.7m$
´ð£º£¨1£©¸Õ¿ªÊ¼Ô˶¯Ê±£¬Ä¾ÏäMºÍСÎï¿émµÄ¼ÓËÙ¶È·Ö±ðΪ${a_m}=3m/{s^2}$£¬aM=5.5m/s2£»
£¨2£©Ð¡Îï¿émÀ뿪ľÏäMʱµÄËÙ¶È$\frac{11}{2}\sqrt{10}$m/s£»
£¨3£©Ð¡Îï¿ém´Ó¿ªÊ¼Ô˶¯µ½ÂäµØÊ±£¬Ä¾ÏäMÔ˶¯µÄÎ»ÒÆ12.7m
µãÆÀ ¸ÃÌâÉæ¼°µ½Ïà¶ÔÔ˶¯µÄ¹ý³Ì£¬ÒªÇóͬѧÃÇÄܸù¾ÝÊÜÁ¦Çé¿öÕýÈ··ÖÎöÔ˶¯Çé¿ö£¬²¢ÄÜÊìÁ·ÔËÓÃÔ˶¯Ñ§»ù±¾¹«Ê½½âÌ⣬ÄѶȽϴó£®
| A£® | VA=2VB | B£® | ¦ØA=¦ØC | C£® | ¦ØA=2¦ØB | D£® | nB=2nA |
| A£® | Ô˶¯¹ì¼£Ô½³¤£¬µç×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äÔ½³¤ | |
| B£® | Ô˶¯¹ì¼£Ëù¶ÔÓ¦µÄÔ²ÐĽÇÔ½´ó£¬µç×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äÔ½³¤ | |
| C£® | Ôڴų¡ÖÐÔ˶¯Ê±¼äÏàͬµÄµç×Ó£¬Æä¹ì¼£Ò»¶¨ÖØºÏ | |
| D£® | µç×ÓµÄÔ˶¯ËÙÂʲ»Í¬£¬ËüÃÇÔڴų¡ÖÐÔ˶¯µÄʱ¼ä¿ÉÄÜÏàͬ |
| A£® | ÎïÌåµÄËÙ¶ÈΪÁãʱ£¬ËüÊܵ½µÄºÏÍâÁ¦Ò»¶¨ÎªÁã | |
| B£® | ÎïÌåÔ˶¯µÄËÙ¶ÈÔ½´ó£¬ËüÊܵ½µÄºÏÍâÁ¦Ò»¶¨Ô½´ó | |
| C£® | ÎïÌåÊܵ½µÄºÏÍâÁ¦Ô½´ó£¬ÆäËٶȱ仯һ¶¨Ô½¿ì | |
| D£® | ÎïÌåËùÊܵĺÏÍâÁ¦²»ÎªÁãʱ£¬ÆäËÙ¶ÈÒ»¶¨Ôö´ó |