题目内容
R-
| gT2 |
| 4π2 |
R-
.| gT2 |
| 4π2 |
分析:小球在光滑碗内靠重力和支持力的合力提供向心力,根据向心力和重力的关系求出小球与半球形碗球心连线与竖直方向的夹角,根据几何关系求出平面离碗底的距离h.
解答:解:小球靠重力和支持力的合力提供向心力,如图所示:

小球做圆周运动的半径为r=Rsinθ,根据力图可知tanθ=
=
;
解得cosθ=
.
所以h=R-Rcosθ=R-
=R-
.
故答案为:R-
.
小球做圆周运动的半径为r=Rsinθ,根据力图可知tanθ=
| F向 |
| mg |
| mRsinθω2 |
| mg |
解得cosθ=
| g |
| Rω2 |
所以h=R-Rcosθ=R-
| g |
| ω2 |
| gT2 |
| 4π2 |
故答案为:R-
| gT2 |
| 4π2 |
点评:解决本题的关键知道小球做圆周运动向心力的来源,运用牛顿第二定律和几何关系进行求解.
练习册系列答案
相关题目