ÌâÄ¿ÄÚÈÝ
4£®Ä³Ì½¾¿ÐÔѧϰС×飬ÀûÓÃÈçͼ¼×ËùʾµÄµç·²âÁ¿Ò»½ÚÐÂµç³ØµÄµç¶¯ÊƺÍÄÚµç×裮¢ÙʵÑéʱ·¢ÏÖ£ºÓÉÓÚÐÂµç³ØµÄÄÚ×èºÜС£¬µ±»¬¶¯±ä×èÆ÷ÔÚ×èÖµ½Ï´óµÄ·¶Î§ÄÚµ÷½Úʱ£¬µçѹ±íµÄʾÊý±ä»¯ºÜС£¬Ð¡×é³ÉÔ±ÀûÓÃ±ä»»×ø±êµÄ·½·¨£¬»³öµÄU-IͼÏóÈçͼÒÒËùʾ£¬Ôòµç³ØµÄµç¶¯ÊÆÎªE£¬ÄÚ×èΪ$\frac{E-{U}_{0}}{I}$£®
Ò×´íÒ×»ì±æÎö£º¢ÚС×é³ÉÔ±½«ÒÑÖª×èֵΪR0µÄ¶¨Öµµç×èºÍµç³Ø´®Áªºó£¬ÖØÐ½ÓÈëµç·¿ªÊ¼ÊµÑ飬Èçͼ±ûËùʾ£¬¸Ä±ä»¬¶¯±ä×èÆ÷µÄ×èÖµ£¬²â³öµ±µçÁ÷±íµÄʾÊýΪI1ʱ£¬µçѹ±íµÄʾÊýΪU1£»µ±µçÁ÷±íµÄʾÊýΪI2ʱ£¬µçѹ±íµÄʾÊýΪU2£¬Ôòµç³ØµÄµç¶¯ÊÆÎª$\frac{{U}_{1}{I}_{2}-{U}_{2}{I}_{1}}{{I}_{2}-{I}_{1}}$£¬ÄÚ×èΪ$\frac{{U}_{1}-{U}_{2}}{{I}_{2}-{I}_{1}}$-R0£»£®
·ÖÎö ¢Ù¸ù¾Ý±ÕºÏµç·ŷķ¶¨Âɿɵóö¶ÔÓ¦µÄͼÏ󣬸ù¾ÝͼÏó¹æÂÉ¿ÉÃ÷È·µç¶¯ÊƺÍÄÚ×èµÄ±í´ïʽ£»
¢Ú¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉÁÐʽ£¬ÁªÁ¢·½³Ì¿ÉÇóµÃµç¶¯ÊƺÍÄÚµç×裮
½â´ð ½â£º¢Ù¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉ¿ÉÖªU=E-Ir
Ôò¿ÉÖª£¬Í¼ÏóÓë×Ý×ø±êµÄбÂʱíʾµç¶¯ÊÆ£»Í¼ÏóµÄбÂʱíʾÄÚµç×裬¹Êr=$\frac{E-{U}_{0}}{I}$£»
¢Ú½«R0µÈЧΪµçÔ´ÄÚ×èr¡ä£»ÔòÓɱպϵç·ŷķ¶¨ÂÉ¿ÉÖª£º
U1=E-I1r¡ä
U2=E-I2r¡ä
ÁªÁ¢½âµÃ£º
E=$\frac{{U}_{1}{I}_{2}-{U}_{2}{I}_{1}}{{I}_{2}-{I}_{1}}$£»r'=$\frac{{U}_{1}-{U}_{2}}{{I}_{2}-{I}_{1}}$£»
¹ÊµçÔ´ÄÚ×èr=$\frac{{U}_{1}-{U}_{2}}{{I}_{2}-{I}_{1}}$-R0£»
¹Ê´ð°¸Îª£º¢ÙE $\frac{E-{U}_{0}}{I}$ ¢Ú$\frac{{U}_{1}{I}_{2}-{U}_{2}{I}_{1}}{{I}_{2}-{I}_{1}}$£»$\frac{{U}_{1}-{U}_{2}}{{I}_{2}-{I}_{1}}$-R0£»
µãÆÀ ±¾Ì⿼²éÁ˲âµç¶¯ÊƺÍÄÚµç×èʵÑéÊý¾Ý´¦ÀíµÄÁ½¸ö·½·¨£¬Òª×¢ÒâÃ÷ȷͼÏ󷨱ȷ½³Ì·¨Îó²î¸üС£¬´¦Àí¸ü·½±ã£®
| A£® | G | B£® | $\frac{G}{cos¦Á}$ | C£® | $\frac{G}{tan¦Á}$ | D£® | $\frac{G}{sin¦Á}$ |
| A£® | µç×ÓÔڵ糡ÖÐÔ˶¯ºÍÔڴų¡ÖÐÔ˶¯Ê±£¬¼ÓËٶȶ¼²»±ä£¬¶¼ÊÇÔȱäËÙÔ˶¯ | |
| B£® | ƫת´Å³¡´øµç´Å¸ÐӦǿ¶È·½Ïò´¹Ö±Ö½ÃæÏòÍâ | |
| C£® | µç×ÓÔڴų¡ÖÐËùÊܵÄÂåÂ××ÈÁ¦µÄ´óСΪ$\frac{eB}{m}$$\sqrt{2eUm}$ | |
| D£® | ¼ÓËÙµçѹUÔ½´ó£¬µç×Ó×Ó°¡´Å³¡ÖÐÔ˶¯µÄÖÜÆÚÔ½´ó |
| A£® | ¿É±äµç×èR×èÖµÔö´ó£¬Á÷¹ýËüµÄµçÁ÷Ôö´ó | |
| B£® | µç×èR2Á½¶ËµÄµçѹ¼õС£¬¼õСÁ¿Ð¡ÓÚ¡÷U | |
| C£® | ¿É±äµç×èR×èÖµÔö´ó£¬µçÔ´Êä³ö¹¦ÂÊÔö´ó | |
| D£® | ·¶Ëµçѹһ¶¨Ôö´ó£¬Ôö´óÁ¿Ð¡ÓÚ¡÷U |