ÌâÄ¿ÄÚÈÝ
4£®£¨1£©AÇò¾¹ý¶à³¤Ê±¼äÓëBÇò·¢ÉúµÚÒ»´ÎÅöײ£¿
£¨2£©µÚÒ»´ÎÅöײºó£¬A¡¢BÁ½ÇòµÄËٶȸ÷Ϊ¶à´ó£¿
£¨3£©µÚÒ»´ÎÅöײºó£¬Òª¾¹ý¶à³¤Ê±¼äÔٴη¢ÉúÅöײ£¿
·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öAÇòµÄ¼ÓËÙ¶È£¬ÓÉËÙ¶ÈÎ»ÒÆ¹«Ê½Çó³öAÇòÓëBÇòÅöײǰµÄʱ¼ä£®
£¨2£©ÓÉÓÚÅöײ¹ý³ÌÖÐA¡¢BÁ½Çò×ܶ¯ÄÜÎÞËðʧ£¬½»»»ËÙ¶È£¬¸ù¾ÝÄÜÁ¿ÊغãºÍ¶¯Á¿Êغ㶨ÂÉÁÐʽÇó½âËÙ¶È£®
£¨3£©µÚÒ»´ÎÅöºó£¬AÇò×·¼°BÇò£¬µ±Î»ÒÆÏàµÈʱ£¬·¢ÉúµÚ¶þÅöײ£¬ÓÉÎ»ÒÆÏàµÈÇó³öµÚ¶þ´ÎÅöײʱ¼ä£®
½â´ð ½â£º£¨1£©ÉèСÇòAµÄ¼ÓËÙ¶ÈΪa£¬¾¹ýʱ¼ät1ÓëBÇò·¢ÉúµÚÒ»´ÎÅöײ£¬Ôò
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÖª£ºQE=ma
ÓÉÎ»ÒÆÊ±¼ä¹ØÏµÖªL=$\frac{1}{2}a{t}_{1}^{2}$
½âµÃt1=$\sqrt{\frac{2mL}{QE}}$
£¨2£©ÉèAÅöײǰµÄËÙ¶ÈΪv0£¬ÅöײºóAºÍBµÄËÙ¶È·Ö±ðΪv1¡¢v2£¬Ôò
$\frac{1}{2}m{v}_{0}^{2}$=QEL
¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÖªmv0=mv1+mv2
¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉÖª$\frac{1}{2}m{v}_{0}^{2}$=$\frac{1}{2}m{v}_{1}^{2}$$+\frac{1}{2}m{v}_{2}^{2}$
½âµÃv1=0£¬v2=$\sqrt{\frac{2QEL}{m}}$
£¨3£©ÉèµÚÒ»´ÎÅöײºó£¬¾¹ýʱ¼ät2£¬AºÍBÔÙ·¢ÉúÅöײ£¬Ôò
$\frac{1}{2}a{t}_{2}^{2}$=v2t2
½âµÃt2=2$\sqrt{\frac{2mL}{QE}}$
´ð£º£¨1£©AÇò¾¹ýt$\sqrt{\frac{2mL}{QE}}$ÓëBÇò·¢ÉúµÚÒ»´ÎÅöײ£»
£¨2£©µÚÒ»´ÎÅöײºó£¬A¡¢BÁ½ÇòµÄËÙ¶È·Ö±ðÊÇv1=0£¬v2=$\sqrt{\frac{2QEL}{m}}$£»
£¨3£©µÚÒ»´ÎÅöײºó£¬Òª¾¹ý2$\sqrt{\frac{2mL}{QE}}$Ôٴη¢ÉúÅöײ£®
µãÆÀ ±¾ÌâÊÇСÇòÖÜÆÚÐÔÔ˶¯ÎÊÌ⣬×ÛºÏÓ¦ÓÃÅ£¶ÙÔ˶¯¶¨ÂɺÍÄÜÁ¿Êغ㶨ÂÉ¡¢¶¯Á¿Êغ㶨ÂɽâÌ⣬ÊôÓÚÄÑÌ⣮
| A£® | Ò»Ö±Ôö´ó | B£® | Ò»Ö±¼õС | C£® | ÏȼõСºóÔö´ó | D£® | ÎÞ·¨È·¶¨ |
| A£® | 0.5Сʱ | B£® | 1.4Сʱ | C£® | 4.2Сʱ | D£® | 12.6Сʱ |
| A£® | x=8£¬y=3 | B£® | x=9£¬y=5 | C£® | x=8£¬y=5 | D£® | x=9£¬y=4 |
| A£® | Òõ¼«ÉäÏß¾ÍÊÇÏ¡±¡ÆøÌåµ¼µçµÄ»Ô¹â·ÅµçÏÖÏó | |
| B£® | Òõ¼«ÉäÏßÊÇÔÚÕæ¿Õ¹ÜÄÚÓÉÒõ¼«·¢ÉúµÄµç×ÓÁ÷ | |
| C£® | Òõ¼«ÉäÏßÊÇ×é³ÉÎïÌåµÄÔ×Ó | |
| D£® | Òõ¼«ÉäÏß°´Ö±Ïß´«²¥£¬µ«¿É±»µç³¡¡¢´Å³¡Æ«×ª |