题目内容

如图所示,竖直平面内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电阻不计的平行光滑金属导轨ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R.在MN上方及CD下方有水平方向的匀强磁场Ⅰ和Ⅱ,磁感应强度大小均为B.现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长.已知导体棒下落时的速度大小为v1,下落到MN处时的速度大小为v2.

 

(1)求导体棒ab从A处下落时的加速度大小.

(2)若导体棒ab进入磁场Ⅱ后棒中电流大小始终不变,求磁场Ⅰ和Ⅱ之间的距离h和R2上的电功率

 

【答案】

(1)g-       

(2)

【解析】(1)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动,由牛顿第二定律,得

mg-BIL=ma,式中L=r

式中  =4R

由以上各式可得到

(2)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即

式中  

解得      

导体棒从MN到CD做加速度为g的匀加速直线运动,有

得  

此时导体棒重力的功率为

根据能量守恒定律,此时导体棒重力的功率全部转化为电路中的电功率,即

所以,

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网