题目内容
4.人造地球卫星在绕地球做圆周运动的过程中,下列说法中正确的是( )| A. | 卫星离地球越远,角速度越小 | |
| B. | 同一圆轨道上运行的两颗卫星,线速度的大小不一定相同 | |
| C. | 一切地球卫星运行的瞬时速度都大于7.9km/s | |
| D. | 地球同步卫星可以在以地心为圆心、离地高度为固定值的一切圆轨道上运动 |
分析 根据万有引力提供向心力得出线速度、角速度与轨道半径的关系,从而判断大小关系,地球同步卫星定轨道、定周期、定高度、定速率.
解答 解:AB、卫星绕地球做匀速圆周运动时,由地球的万有引力提供向心力,则得
G$\frac{Mm}{{r}^{2}}$=mω2r=m$\frac{{v}^{2}}{r}$,解得ω=$\sqrt{\frac{GM}{{r}^{3}}}$,v=$\sqrt{\frac{GM}{r}}$,可知,卫星离地球越远,轨道半径越大,角速度越小.同一圆轨道上运行的两颗卫星,线速度的大小一定相同.故A正确,B错误.
C、7.9km/s是贴近地球表面做匀速圆周运动的卫星的速度,v=$\sqrt{\frac{GM}{r}}$,可知卫星的轨道半径大于地球的半径,则线速度小于7.9km/s,故C错误.
D、地球同步卫星定轨道,在赤道上空,高度、速率、周期都一定,故D错误.
故选:A
点评 解决本题的关键掌握万有引力提供向心力这一重要理论,知道线速度、角速度与轨道半径的关系,并能灵活运用,知道第一宇宙速度是最小的发射速度,绕地球做匀速圆周运动的最大环绕速度.
练习册系列答案
相关题目
19.
如图,一小车上有一个固定的水平横杆,左边有与竖直方向成θ角的轻杆与横杆固定,下端连接一质量为m的小球P.横杆右边用一根细线吊一相同的小球Q.当小车沿水平面做匀变速直线运动时,细线保持与竖直方向的夹角为α不变.已知θ<α,则下列说法正确的是( )
| A. | 小球Q受到的合力大小为mgtanα | B. | 轻杆对小球P的弹力沿轻杆方向 | ||
| C. | 小球P受到的合力大小为mgtanθ | D. | 小车一定向右做匀加速运动 |
9.某机械的效率是80%,它对外做了1000J的有用功,这台机械消耗的能量是( )
| A. | 1000J | B. | 800J | C. | 1200J | D. | 1250J |
13.
轻绳一端通过光滑的定滑轮与物块P连接,另一端与套在光滑竖直杆上的圆环Q连接,Q从静止释放后,上升一定距离到达与定滑轮等高处,则在此过程中( )
| A. | 任意时刻P、Q两物体的速度大小满足vP<vQ | |
| B. | 任意时刻Q受到的拉力大小与P的重力大小相等 | |
| C. | P下落过程只有重力和弹力做功机械能守恒 | |
| D. | 当Q上升到与滑轮等高时,它的机械能最大 |
14.
如图所示,甲、乙两种粗糙面不同但高度相同的传送带,倾斜于水平地面放置.以同样恒定速率v向上运动.现将一质量为m的小物体(视为质点)轻轻放在A处,小物体在甲传送带上到达B处时恰好达到传送带的速率v;在乙传送带上到达离B竖直高度为h的C处时达到传送带的速率v.已知B处离地面高度为H,则在物体从A到B的运动过程中( )
| A. | 两种传送带对小物体做功相等 | |
| B. | 将小物体传送到B处,两种传送带消耗的电能相等 | |
| C. | 两种传送带与小物体之间的动摩擦因数甲的大 | |
| D. | 将小物体传送到B处,两种系统产生的热量相等 |