ÌâÄ¿ÄÚÈÝ
20£®µç¶¯×ÔÐгµÊÇÒ»ÖÖÖØÒªµÄ½»Í¨¹¤¾ß£¬³É¶¼ÊÐÿÌìÓÐÊýÊ®ÍòÁ¾µç¶¯°×ÐгµÐÐÊ»ÔÚ´ó½ÖСÏÐγÉÁËÒ»µÀ¶ÀÌØµÄ·ç¾°£®µç¶¯×ÔÐгµÌṩÄÜÁ¿µÄ×°ÖÃΪװÔÚµç³ØºÐÄÚµÄµç³Ø×飬µ±Ëü¸øµç¶¯»ú¹©µçʱ£¬µç¶¯»ú½«´ø¶¯³µÂÖת¶¯£®¼ÙÉèÓÐÒ»Á¾µç¶¯×ÔÐгµ£¬È˺ͳµµÄ×ÜÖÊÁ¿Îª120kg£¬ÔÚˮƽֱÏß¹«Â·ÉÏÐÐʻʱËüÊܵ½µÄ×èÁ¦Ô¼µÈÓÚÈ˺ͳµ×ÜÖØµÄ0.02±¶£¬Æä¶î¶¨Êä³ö¹¦ÂÊΪ120W£®Èôµç¶¯×ÔÐгµ´Ó¾²Ö¹¿ªÊ¼×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËٶȵĴóСΪa=0.2m/s2£¬×ÔÐгµ´ïµ½¶î¶¨Êä³ö¹¦Âʺ󣬱£³Ö¶î¶¨¹¦Âʲ»±ä¼ÌÐøÐÐÊ»£¬Çó£º
£¨1£©µç¶¯×ÔÐгµÔÚÕû¸ö¹ý³ÌÖÐËùÄÜ´ïµ½µÄ×î´óËÙ¶È£®
£¨2£©ÔȼÓËÙ¶ÈÔ˶¯Äܱ£³Ö¶à³¤Ê±¼ä£¿
£¨3£©µ±µç¶¯×ÔÐгµµÄËÙ¶ÈΪ2m/sʱµÄ˲ʱ¹¦ÂÊ£®
£¨4£©µ±µç¶¯×ÔÐгµµÄËÙ¶ÈΪ3m/sʱµÄ¼ÓËÙ¶È£®
·ÖÎö £¨1£©¸ù¾ÝP=FvÇó³öÇ£ÒýÁ¦µÄ´óС£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö×èÁ¦µÄ´óС£¬µ±Ç£ÒýÁ¦µÈÓÚ×èÁ¦Ê±£¬ËÙ¶È×î´ó£¬¸ù¾ÝP=FvÇó³ö×î´óËÙ¶È£®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÇ£ÒýÁ¦µÄ´óС£¬Í¨¹ýP=FvÇó³öÔȼÓËÙÖ±ÏßÔ˶¯µÄÄ©ËÙ¶È£¬½áºÏËÙ¶Èʱ¼ä¹«Ê½Çó³öÔȼÓËÙÖ±ÏßÔ˶¯µÄʱ¼ä£»
£¨3£©Ë²Ê±¹¦ÂÊP=FV
£¨4£©¸ù¾ÝP=FvÇó³öÇ£ÒýÁ¦µÄ´óС£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£®
½â´ð ½â£º£¨1£©µ±Ç£ÒýÁ¦F=f=0.02mgʱ£¬ËÙ¶È×î´óvm=$\frac{P}{f}$=$\frac{120}{0.02¡Á120¡Á10}$=5m/s£»
£¨2£©Èôµç¶¯×ÔÐгµ´Ó¾²Ö¹¿ªÊ¼×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËٶȵĴóСΪa=0.2m/s2£¬
¸ù¾ÝÅ£¶ÙÔ˶¯¶¨ÂÉÖª
F=ma+f=120¡Á0.2+120¡Á10¡Á0.02=48N£¬
´ïµ½¶î¶¨¹¦ÂÊÊÇËÙ¶Èv1=$\frac{P}{F}$=$\frac{120}{48}$m/s=2.5m/s
ÔȼÓËÙ¶ÈÔ˶¯Äܱ£³ÖµÄʱ¼äΪt1=$\frac{{v}_{1}}{a}$=$\frac{2.5}{0.2}$=12.5s
£¨3£©µ±µç¶¯×ÔÐгµµÄËÙ¶ÈΪ2m/sʱµÄ˲ʱ¹¦ÂÊP=FV=48¡Á2=96W£»
£¨4£©µ±µç¶¯×ÔÐгµµÄËÙ¶ÈΪ3m/sʱµÄ¼ÓËÙ¶ÈÇ£ÒýÁ¦F¡ä=$\frac{P}{v}$=$\frac{120}{3}$=40N
¸ù¾ÝÅ£¶ÙÔ˶¯¶¨ÂÉÖªa¡ä=$\frac{F¡ä-f}{m}$=$\frac{40-24}{120}$=$\frac{2}{15}$m/s2
´ð£º£¨1£©µç¶¯×ÔÐгµÔÚÕû¸ö¹ý³ÌÖÐËùÄÜ´ïµ½µÄ×î´óËÙ¶ÈΪ5m/s£®
£¨2£©ÔȼÓËÙ¶ÈÔ˶¯Äܱ£³Ö12.5s£»
£¨3£©µ±µç¶¯×ÔÐгµµÄËÙ¶ÈΪ2m/sʱµÄ˲ʱ¹¦ÂÊΪ96W£®
£¨4£©µ±µç¶¯×ÔÐгµµÄËÙ¶ÈΪ3m/sʱµÄ¼ÓËÙ¶ÈΪ$\frac{2}{15}$m/s2£®
µãÆÀ ±¾Ì⿼²é»ú³µµÄÆô¶¯·½Ê½£¬ÖªµÀÇ£ÒýÁ¦µÈÓÚ×èÁ¦Ê±£¬ËÙ¶È×î´ó£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɽøÐÐÇó½â£¬ÄѶȲ»´ó£®
| ºì±í±Ê | A | C | C | B | A | B |
| ºÚ±í±Ê | C | A | B | C | B | A |
| ×è Öµ | ÓÐ×èÖµ | ×èֵͬAC²âÖµ | ºÜ´ó | ºÜС | ºÜ´ó | ½Ó½üAC¼ä×èÖµ |
| A£® | 8£º1 | B£® | 1£º8 | C£® | 2£º1 | D£® | 1£º2 |
| A£® | $\sqrt{\frac{{{m_2}{R_1}}}{{{m_1}{R_2}}}}$v£¬$\sqrt{\frac{{{m_1}R_2^3}}{{{m_2}R_1^3}}}$T | |
| B£® | $\sqrt{\frac{{{m_1}{R_2}}}{{{m_2}{R_1}}}}$v£¬$\sqrt{\frac{{{m_2}R_1^3}}{{{m_1}R_2^3}}}$T | |
| C£® | $\sqrt{\frac{{{m_2}{R_1}}}{{{m_1}{R_2}}}}$v£¬$\sqrt{\frac{{{m_2}R_1^3}}{{{m_1}R_2^3}}}$T | |
| D£® | $\sqrt{\frac{{{m_1}{R_2}}}{{{m_2}{R_1}}}}$v£¬$\sqrt{\frac{{{m_1}R_2^3}}{{{m_2}R_1^3}}}$T |
| A£® | ¼×µç×èË¿Á½¶ËµÄµçѹ±ÈÒÒµç×èË¿Á½¶ËµÄµçѹС | |
| B£® | ¼×µç×èË¿µÄµç×èÂʱÈÒÒµç×èË¿µÄµç×èÂÊС | |
| C£® | ÔÚÏàͬʱ¼äÄÚ£¬µçÁ÷ͨ¹ýÒÒµç×èË¿²úÉúµÄ½¹¶úÈÈÉÙ | |
| D£® | ¼×µç×èË¿ÏûºÄµÄµç¹¦ÂʱÈÒÒµç×èË¿ÏûºÄµÄµç¹¦ÂÊÉÙ |