ÌâÄ¿ÄÚÈÝ

11£®Í¼¼×ΪijÖÖËÙ¶ÈÑ¡ÔñÆ÷ʾÒâͼ£¨Í¼ÒÒÊǸÃ×°Öõĸ©ÊÓͼ£©£¬¼ÓËٵ糡ÓÒ²àÊÇÒ»°ë¾¶ÎªRµÄ½ÓµØÊúÖ±½ðÊôԲͲ£¬ËüÓë¼ÓËٵ糡¿¿µÄºÜ½ü£¬Ô²Í²¿ÉÈÆÊúÖ±ÖÐÐÄÖáÒÔijһ½ÇËÙ¶ÈÄæÊ±ÕëÔÈËÙת¶¯£®O1¡¢O2Ϊ¼ÓËٵ糡Á½¼«°åÉϵÄС¿×£¬O3¡¢O4ΪԲͲֱ¾¶Á½¶ËµÄС¿×£¬ÊúÖ±Ó«¹âÆÁabcdÓëÖ±ÏßO1O2ƽÐУ¬ÇÒµ½Ô²Í²µÄÊúÖ±ÖÐÐÄÖáµÄ¾àÀëOP=3R£®Á£×ÓÔ´·¢³ö£¬Ä³ÖÖÁ£×Ó¾­µç³¡¼ÓËÙ½øÈëԲͲ£¨Í²ÄÚ¼ÓÒ»ÊúÖ±ÏòϵÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈµÄ´óСΪB£©£¬¾­´Å³¡Æ«×ªºó£¬Í¨¹ýԲͲµÄС¿×´òµ½¹âÆÁÉϲúÉúÁÁ°ß£¬¼´±»Ñ¡ÖУ®Õû¸ö×°Öô¦ÓÚÕæ¿ÕÊÒÖУ¬²»¼ÆÁ£×ÓÖØÁ¦¼°Á£×Ó¼äÏ໥×÷Óã®

£¨1£©Èô¿ªÊ¼Ê±Ô²Í²¾²Ö¹ÇÒԲͲÄÚ²»¼Ó´Å³¡£¬µ±¼ÓËÙµçѹµ÷ΪU0ʱ£¬³õËٶȲ»¼ÆµÄ´øµçÁ£×Ó´ÓС¿×O1½øÈë¼ÓËٵ糡£¬ÑØÖ±ÏßO1¡¢O2¡¢O3¡¢O¡¢O4×îÖÕ´ÓO4Éä³ö£®²âµÃÁ£×ÓÔÚԲͲÖÐÔ˶¯µÄʱ¼äΪt0£¬Çó¸ÃÁ£×ӵıȺÉ$\frac{q}{m}$£»
£¨2£©Èôµ÷½Ú¼ÓËÙµçѹµ½Ä³Ò»ÖµÊ±£¬´øµçÁ£×Ó´ÓQ3½øÈëԲͲ£¬¾­´Å³¡Æ«×ªÔÚԲͲÐýת²»µ½Ò»ÖܵÄʱ¼äÄÚ´ÓQ4Éä³ö£¬Ç¡ºÃ´òµ½¹âÆÁµÄPµã£¬ÇóԲͲת¶¯µÄ½ÇËٶȦأ»
£¨3£©±£³Ö¦Ø²»±ä£¬½öµ÷Õû¼ÓËٵ糡µÄµçѹ£¬¿ÉÒÔʹ¸ÃÁ£×ÓÒÔ²»Í¬µÄËÙ¶ÈÉäÈëԲͲ£¬ÈôÔÚ¹âÆÁÉÏÐγɵÄÁÁ°ß·¶Î§ÎªQ1P=PQ2=$\sqrt{3}$R£¬Çó´ïµ½¹âÆÁµÄÁ£×ÓËù¶ÔÓ¦µÄËÙÂÊvµÄ·¶Î§£®

·ÖÎö £¨1£©Ïȸù¾Ý¶¯Äܶ¨ÀíÇó³öÁ£×Ó¼ÓËÙ»ñµÃµÄËÙ¶È£¬ÈôԲͲ¾²Ö¹ÇÒԲͲÄÚ²»¼Ó´Å³¡Ê±£¬Á£×ÓÔÚԲͲÄÚ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÓÉÎ»ÒÆ¹«Ê½£¬¼´¿ÉÇó½â£®
£¨2£©¹âÆÁPQ·¶Î§ÄÚµÄÈÎÒâλÖÃÀï¾ù»á³öÏÖÁÁ°ß£¬ËµÃ÷PQ·¶Î§ÄÚ¾ùÓÐÁ£×Óµ½´ï£¬×îСËٶȵÄÁ£×Óµ½´ïP£¬×î´óËٶȵÄÁ£×Óµ½´ïQ£¬¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦µÃµ½ËÙ¶ÈÓë°ë¾¶µÄ¹ØÏµ£¬Óɼ¸ºÎ¹ØÏµÇó½â³ö¹ì¼£°ë¾¶£¬¼´¿ÉµÃµ½ËÙ¶ÈvµÄ·¶Î§£®¸ù¾ÝÔ²ÖÜÔ˶¯µÄÖÜÆÚÐÔ£¬·ÖÎöԲͲת¶¯µÄ½ÇËٶȦأ®
£¨3£©¸ù¾Ý¼¸ºÎ¹ØÏµ£¬½áºÏÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¼´¿ÉÇó½â£®

½â´ð ½â£º£¨1£©ÒÀ¾ÝÎ»ÒÆ¹«Ê½£¬ÔòÓУ¬2R=v0t0£¬
¸ù¾Ý¶¯Äܶ¨Àí£¬$\frac{1}{2}m{v}_{0}^{2}=q{U}_{0}$
½âµÃ£º$\frac{q}{m}=\frac{2{R}^{2}}{{U}_{0}{t}_{0}^{2}}$
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪԲͲÐýתµÄʱ¼ä£¬
ÔòÓУº$¦Ø=\frac{¡÷¦È}{¡÷t}$£¬
$¡÷¦È=\frac{¦Ð}{2}$
$¡÷t=\frac{T}{4}$
ÒòT=$\frac{2¦Ðm}{Bq}$
½âµÃ£º$¦Ø=\frac{qB}{m}$=$\frac{2{R}^{2}B}{{U}_{0}{t}_{0}^{2}}$
£¨3£©Óɼ¸ºÎ¹ØÏµ£¬¿ÉµÃ£¬r1=$\frac{\sqrt{3}}{3}R$

ÓÖÒòΪqBv1=m$\frac{{v}_{1}^{2}}{{r}_{1}}$£¬¿É½âµÃ£ºv1=$\frac{2\sqrt{3}B{R}^{2}}{3{U}_{0}{t}_{0}^{2}}$
Óɼ¸ºÎ¹ØÏµ£¬r2=$\sqrt{3}$R£»
ͬÀí£¬¿ÉµÃ£¬v2=$\frac{2\sqrt{3}B{R}^{2}}{{U}_{0}{t}_{0}^{2}}$
ËùÒÔÓУ¬$\frac{2\sqrt{3}B{R}^{2}}{3{U}_{0}{t}_{0}^{2}}$¡Üv¡Ü$\frac{2\sqrt{3}B{R}^{2}}{{U}_{0}{t}_{0}^{2}}$£®
´ð£º£¨1£©¸ÃÁ£×ӵıȺÉ$\frac{2{R}^{2}}{{U}_{0}{t}_{0}^{2}}$£»
£¨2£©Ô²Í²×ª¶¯µÄ½ÇËÙ¶È$\frac{2{R}^{2}B}{{U}_{0}{t}_{0}^{2}}$£»
£¨3£©´ïµ½¹âÆÁµÄÁ£×ÓËù¶ÔÓ¦µÄËÙÂÊvµÄ·¶Î§$\frac{2\sqrt{3}B{R}^{2}}{3{U}_{0}{t}_{0}^{2}}$¡Üv¡Ü$\frac{2\sqrt{3}B{R}^{2}}{{U}_{0}{t}_{0}^{2}}$£®

µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÔ˶¯¹æÂÉ£¬»­³öÁÙ½ç¹ì¼££¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɲ¢½áºÏ¼¸ºÎ¹ØÏµÁÐʽ·ÖÎö£®¶ÔÓÚÔÈËÙÔ²ÖÜÔ˶¯£¬»¹³£³£Òª¿¼ÂÇÆäÖÜÆÚÐÔ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø