ÌâÄ¿ÄÚÈÝ
11£®Í¼¼×ΪijÖÖËÙ¶ÈÑ¡ÔñÆ÷ʾÒâͼ£¨Í¼ÒÒÊǸÃ×°Öõĸ©ÊÓͼ£©£¬¼ÓËٵ糡ÓÒ²àÊÇÒ»°ë¾¶ÎªRµÄ½ÓµØÊúÖ±½ðÊôԲͲ£¬ËüÓë¼ÓËٵ糡¿¿µÄºÜ½ü£¬Ô²Í²¿ÉÈÆÊúÖ±ÖÐÐÄÖáÒÔijһ½ÇËÙ¶ÈÄæÊ±ÕëÔÈËÙת¶¯£®O1¡¢O2Ϊ¼ÓËٵ糡Á½¼«°åÉϵÄС¿×£¬O3¡¢O4ΪԲͲֱ¾¶Á½¶ËµÄС¿×£¬ÊúÖ±Ó«¹âÆÁabcdÓëÖ±ÏßO1O2ƽÐУ¬ÇÒµ½Ô²Í²µÄÊúÖ±ÖÐÐÄÖáµÄ¾àÀëOP=3R£®Á£×ÓÔ´·¢³ö£¬Ä³ÖÖÁ£×Ó¾µç³¡¼ÓËÙ½øÈëԲͲ£¨Í²ÄÚ¼ÓÒ»ÊúÖ±ÏòϵÄÔÈÇ¿´Å³¡£¬´Å¸ÐӦǿ¶ÈµÄ´óСΪB£©£¬¾´Å³¡Æ«×ªºó£¬Í¨¹ýԲͲµÄС¿×´òµ½¹âÆÁÉϲúÉúÁÁ°ß£¬¼´±»Ñ¡ÖУ®Õû¸ö×°Öô¦ÓÚÕæ¿ÕÊÒÖУ¬²»¼ÆÁ£×ÓÖØÁ¦¼°Á£×Ó¼äÏ໥×÷Ó㮣¨1£©Èô¿ªÊ¼Ê±Ô²Í²¾²Ö¹ÇÒԲͲÄÚ²»¼Ó´Å³¡£¬µ±¼ÓËÙµçѹµ÷ΪU0ʱ£¬³õËٶȲ»¼ÆµÄ´øµçÁ£×Ó´ÓС¿×O1½øÈë¼ÓËٵ糡£¬ÑØÖ±ÏßO1¡¢O2¡¢O3¡¢O¡¢O4×îÖÕ´ÓO4Éä³ö£®²âµÃÁ£×ÓÔÚԲͲÖÐÔ˶¯µÄʱ¼äΪt0£¬Çó¸ÃÁ£×ӵıȺÉ$\frac{q}{m}$£»
£¨2£©Èôµ÷½Ú¼ÓËÙµçѹµ½Ä³Ò»ÖµÊ±£¬´øµçÁ£×Ó´ÓQ3½øÈëԲͲ£¬¾´Å³¡Æ«×ªÔÚԲͲÐýת²»µ½Ò»ÖܵÄʱ¼äÄÚ´ÓQ4Éä³ö£¬Ç¡ºÃ´òµ½¹âÆÁµÄPµã£¬ÇóԲͲת¶¯µÄ½ÇËٶȦأ»
£¨3£©±£³Ö¦Ø²»±ä£¬½öµ÷Õû¼ÓËٵ糡µÄµçѹ£¬¿ÉÒÔʹ¸ÃÁ£×ÓÒÔ²»Í¬µÄËÙ¶ÈÉäÈëԲͲ£¬ÈôÔÚ¹âÆÁÉÏÐγɵÄÁÁ°ß·¶Î§ÎªQ1P=PQ2=$\sqrt{3}$R£¬Çó´ïµ½¹âÆÁµÄÁ£×ÓËù¶ÔÓ¦µÄËÙÂÊvµÄ·¶Î§£®
·ÖÎö £¨1£©Ïȸù¾Ý¶¯Äܶ¨ÀíÇó³öÁ£×Ó¼ÓËÙ»ñµÃµÄËÙ¶È£¬ÈôԲͲ¾²Ö¹ÇÒԲͲÄÚ²»¼Ó´Å³¡Ê±£¬Á£×ÓÔÚԲͲÄÚ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÓÉÎ»ÒÆ¹«Ê½£¬¼´¿ÉÇó½â£®
£¨2£©¹âÆÁPQ·¶Î§ÄÚµÄÈÎÒâλÖÃÀï¾ù»á³öÏÖÁÁ°ß£¬ËµÃ÷PQ·¶Î§ÄÚ¾ùÓÐÁ£×Óµ½´ï£¬×îСËٶȵÄÁ£×Óµ½´ïP£¬×î´óËٶȵÄÁ£×Óµ½´ïQ£¬¸ù¾ÝÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦µÃµ½ËÙ¶ÈÓë°ë¾¶µÄ¹ØÏµ£¬Óɼ¸ºÎ¹ØÏµÇó½â³ö¹ì¼£°ë¾¶£¬¼´¿ÉµÃµ½ËÙ¶ÈvµÄ·¶Î§£®¸ù¾ÝÔ²ÖÜÔ˶¯µÄÖÜÆÚÐÔ£¬·ÖÎöԲͲת¶¯µÄ½ÇËٶȦأ®
£¨3£©¸ù¾Ý¼¸ºÎ¹ØÏµ£¬½áºÏÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÒÀ¾ÝÎ»ÒÆ¹«Ê½£¬ÔòÓУ¬2R=v0t0£¬
¸ù¾Ý¶¯Äܶ¨Àí£¬$\frac{1}{2}m{v}_{0}^{2}=q{U}_{0}$
½âµÃ£º$\frac{q}{m}=\frac{2{R}^{2}}{{U}_{0}{t}_{0}^{2}}$
£¨2£©ÓÉÌâÒâ¿ÉÖª£¬´øµçÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪԲͲÐýתµÄʱ¼ä£¬
ÔòÓУº$¦Ø=\frac{¡÷¦È}{¡÷t}$£¬
$¡÷¦È=\frac{¦Ð}{2}$
$¡÷t=\frac{T}{4}$
ÒòT=$\frac{2¦Ðm}{Bq}$
½âµÃ£º$¦Ø=\frac{qB}{m}$=$\frac{2{R}^{2}B}{{U}_{0}{t}_{0}^{2}}$
£¨3£©Óɼ¸ºÎ¹ØÏµ£¬¿ÉµÃ£¬r1=$\frac{\sqrt{3}}{3}R$![]()
ÓÖÒòΪqBv1=m$\frac{{v}_{1}^{2}}{{r}_{1}}$£¬¿É½âµÃ£ºv1=$\frac{2\sqrt{3}B{R}^{2}}{3{U}_{0}{t}_{0}^{2}}$
Óɼ¸ºÎ¹ØÏµ£¬r2=$\sqrt{3}$R£»
ͬÀí£¬¿ÉµÃ£¬v2=$\frac{2\sqrt{3}B{R}^{2}}{{U}_{0}{t}_{0}^{2}}$
ËùÒÔÓУ¬$\frac{2\sqrt{3}B{R}^{2}}{3{U}_{0}{t}_{0}^{2}}$¡Üv¡Ü$\frac{2\sqrt{3}B{R}^{2}}{{U}_{0}{t}_{0}^{2}}$£®
´ð£º£¨1£©¸ÃÁ£×ӵıȺÉ$\frac{2{R}^{2}}{{U}_{0}{t}_{0}^{2}}$£»
£¨2£©Ô²Í²×ª¶¯µÄ½ÇËÙ¶È$\frac{2{R}^{2}B}{{U}_{0}{t}_{0}^{2}}$£»
£¨3£©´ïµ½¹âÆÁµÄÁ£×ÓËù¶ÔÓ¦µÄËÙÂÊvµÄ·¶Î§$\frac{2\sqrt{3}B{R}^{2}}{3{U}_{0}{t}_{0}^{2}}$¡Üv¡Ü$\frac{2\sqrt{3}B{R}^{2}}{{U}_{0}{t}_{0}^{2}}$£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÔ˶¯¹æÂÉ£¬»³öÁÙ½ç¹ì¼££¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɲ¢½áºÏ¼¸ºÎ¹ØÏµÁÐʽ·ÖÎö£®¶ÔÓÚÔÈËÙÔ²ÖÜÔ˶¯£¬»¹³£³£Òª¿¼ÂÇÆäÖÜÆÚÐÔ£®
| A£® | ËÙ¶ÈÒ»Ö±ÔÚÔö´ó£¬Ö±µ½¼ÓËٶȵÈÓÚÁãΪֹ | |
| B£® | ËÙ¶ÈÏÈÔö´óºó¼õС£¬Ö±µ½¼ÓËٶȵÈÓÚÁãΪֹ | |
| C£® | Î»ÒÆÏÈÔö´óºó¼õС£¬Ö±µ½¼ÓËٶȵÈÓÚÁãΪֹ | |
| D£® | Î»ÒÆÒ»Ö±ÔÚÔö´ó£¬Ö±µ½¼ÓËٶȵÈÓÚÁãΪֹ |
| A£® | µ±2mСÇòÔ˶¯µ½Cµã¹ý³ÌÖУ¬Á½ÇòÓëµØÇò×é³ÉϵͳµÄÖØÁ¦ÊÆÄܼõС | |
| B£® | µ±2mСÇòÔ˶¯µ½Cµãʱ£¬ÆäÔ˶¯ËٶȸպÃΪÁã | |
| C£® | mÇòÔÚCµã×ó²àÄÜÉÏÉýµÄ×î´ó¸ß¶È½«¸ßÓÚ2mÇòÔÚͼÖеijõʼ¸ß¶È | |
| D£® | ´ÓÊͷŸËÇòµ½mÇòµÚÒ»´Î´ï×î´ó¸ß¶ÈµÄ¹ý³Ì£¬2mÇòµÄ»úеÄܽ«Ôö´ó |
| A£® | ÖʵãÕñ¶¯ÆµÂÊÊÇ4Hz | B£® | t=2sʱ£¬ÖʵãµÄ¼ÓËÙ¶È×î´ó | ||
| C£® | ÖʵãµÄÕñ·ùΪ2cm | D£® | t=2sʱ£¬ÖʵãµÄÎ»ÒÆÊÇ2cm |
£¨1£©¹ØÓÚÕâһʵÑ飬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇAC
A£®ÖØ´¸µÄÖÊÁ¿²»±Ø²âÁ¿
B£®´òµã¼ÆÊ±Æ÷Ó¦½ÓµÍѹֱÁ÷µç
C£®Ó¦ÏȽÓͨµçÔ´´òµã£¬ºóÊÍ·ÅÖ½´ø
D£®ÐèʹÓÃÃë±í²â³öÖØÎïÏÂÂäµÄʱ¼ä
£¨2£©Ñ¡ÓÃʵÑéÖеóöµÄÒ»ÌõÖ½´øÀ´ÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£®Í¼ÖÐOµãΪÆðʼµã£¬A£¬B£¬C£¬D£¬E£¬F£¬GΪÆß¸öÏàÁÚµÄÔʼµã£¬FµãÊǵÚn¸öµã£®ÉèÏàÁÚµã¼äµÄʱ¼ä¼ä¸ôΪT£¬ÏÂÁбí´ïʽ¿ÉÒÔÓñ¾ÊµÑéÖмÆËãFµãËÙ¶ÈvFµÄÊÇC£®
| A£®vF=g£¨nT£© | B£®vF=$\sqrt{2g{h}_{n}}$ |
| C£®vF=$\frac{{h}_{n+1}-{h}_{n-1}}{2T}$ | D£®vF=$\frac{{x}_{n+1}+{x}_{n-1}}{2T}$ |
| A£® | ¦Ì1£¼¦Ì2 | B£® | ¦Ì1=¦Ì2 | ||
| C£® | ¦Ì1£¾¦Ì2 | D£® | Ìõ¼þ²»×㣬ÎÞ·¨ÅÐ¶Ï |