题目内容
分析:由圆周运动的规律可得出多长时间火星、地球及月球处在同一直线上;由万有引力充当向心力可知火星半径与地球半径的大小关系.
解答:解:A、因火星的周期为地球周期的2倍,故地球转一周时,火星转动了半圈,故一年内不会出现“火星合日”现象;只有等火星转动一圈时才会同时出现在同一直线上,故约2年出现一次,故A错误,B正确;
C、由G
=m
可知,R=
,故半径R与
成比,故火星的公转半径约为地球公转半径的
倍;故C正确,D错误;
故选:BC.
C、由G
| Mm |
| R2 |
| 4π2R |
| T2 |
| 3 |
| ||
| 3 | T2 |
| 3 | 4 |
故选:BC.
点评:行星绕太阳运动与卫星绕地球运动的模型相似:旋转天体绕中心天体做匀速圆周运动,中心天体对旋转天体的万有引力提供旋转天体的向心力.本题关键抓住万有引力提供向心力,列式求解出线速度、角速度、周期和向心力的表达式,再进行讨论.
练习册系列答案
相关题目