题目内容
5.A.闭合开关S
B.将电阻箱R0的阻值调到最大
C.将电阻箱R0的阻值调到零
D.调节电阻箱R0的阻值,使电压表示数为1.5V,读出此时电阻箱R0的阻值,
E.调节滑动变阻器的阻值,使电压表的示数为3.0V
F.断开开关S
G.将滑动变阻器的滑动触头调到b端
H.将滑动变阻器的滑动触头调到a端
上述操作步骤中,必要的操作步骤按合理顺序排列应为HACEDF.若在步骤 D中,读出R0的值为2400Ω,则电压表的内阻RV=2400Ω.用这种方法测出的内阻RV与其真实值相比偏大(大、小).
分析 应先连接电路,使测量电路电压由小到大,先让电阻箱阻值为0,再让电压表满偏,再调节电阻箱,记录.据此排序.
电压表串联电阻箱后认为电压不变,而实际该支路电压变大,则电阻箱分压大于计算值,则会引起测量值的偏大
解答 解:(1)据实验规程进行排序:要先使测量电路电压由小到大,先让电阻箱阻值为0,闭合S,再让电压表满偏,再调节电阻箱,断开,记录.据此排序:HACEDF、
(2)因是串联关系,则电阻与电压成正比:电压表示数为1.5V,则电阻箱R0分压为1.5V.
则 Rv=R0=2400Ω
因该支路实际电压要比原电压变大,即R0的分压要大一些,故Rv的实际值要小一些,即测量值比真实值大.
故答案为:HACEDF、2400、大
点评 考查半偏法测电阻的原理,明确串联电阻后会引起测量支路的电阻的增大,其分压要变大,此为误差的来源.
练习册系列答案
相关题目
1.
如图所示,两竖直木桩ab、cd固定,一不可伸长的轻绳两端固定在a、C端,绳长L,一质量为m的物体A通过轻质光滑挂钩挂在轻绳中间,静止时轻绳两端夹角为120°.若把轻绳换成自然长度为L的橡皮筋,物体A悬挂后仍处于静止状态,橡皮筋处于弹性限度内.若重力加速度大小为g,关于上述两种情况,下列说法正确的是( )
| A. | 橡皮筋的弹力小于mg | B. | 橡皮筋的弹力大小可能为mg | ||
| C. | 轻绳的弹力大小为2mg | D. | 轻绳的弹力大小为$\frac{1}{2}$mg |
18.
如图所示,质量为m的飞行器绕地球(质量为M)在圆轨道Ⅰ上运行,半径为r1,要进入半径为r2的更高的圆轨道Ⅱ,需先进入一个椭圆转移轨道Ⅲ,然后再进入圆轨道Ⅱ,已知飞行器在圆轨道Ⅱ上运行速度大小为v2,在A点时(通过变速使飞行器进入椭圆轨道Ⅲ,则下列说法中错误的是( )
| A. | 飞行器在轨道Ⅰ上的速度v1=v2$\sqrt{\frac{{r}_{2}}{{r}_{1}}}$ | |
| B. | 轨道Ⅰ处的重力加速度g1=$\frac{{r}_{2}}{{{r}_{1}}^{2}}$v22 | |
| C. | 在椭圆轨道上通过B点飞行器所受万有引力大于向心力 | |
| D. | 假设距地球球心r处引力势能为Ep=-$\frac{GMm}{r}$,则飞行器从轨道Ⅰ转到轨道Ⅱ,其机械能增加了$\frac{GMm}{2{r}_{1}}$-$\frac{GMm}{2{r}_{2}}$ |
10.事实证明:机械波在均匀介质中传播是有能量损失的,距离波源远振动能量越小.今位于坐标原点的波源从平衡位置沿y轴正方向开始做简谐运动,周期为T,振幅为A,该波源产生的简谐横波不断地沿x轴正向传播,波长为λ,波速为v,由于波传播过程中有能量损失,一段时间后,该波传播至某质点p,下列关于质点p振动的说法中正确的是( )
| A. | 开始振动时振幅为A,以后振幅逐渐减小 | |
| B. | 开始振动时振幅为A,以后振幅不变 | |
| C. | 开始振动时振幅为A,以后周期逐渐减小 | |
| D. | 开始振动的方向沿y轴正方向 | |
| E. | 质点p可视为新波源,由质点p振动产生的简谐横波的波长仍为λ,波速仍为v |
17.法拉第发现了磁生电的现象,推动了电磁理论和电磁技术的发展,引领人类进入了电气化时代.下列器件中也是利用磁生电原理工作的是( )
| A. | 电动机 | B. | 电磁炉 | C. | 指南针 | D. | 红外体温计 |