题目内容

一玻璃立方体中心有一点状光源.今在立方体的部分表面镀上不透明薄膜,以致从光源发出的光线只经过一次折射不能透出立方体,已知该玻璃的折射率为 ,求镀膜的面积与立方体表面积之比的最小值.

解析  如图,考虑从玻璃立方体中心O点发出的一条光线,假设它斜射到玻璃立方体上表面发生折射.根据折射定律有

nsin θ=sin α                                                            ①

式中,n是玻璃的折射率,入射角等于θ,α是折射角.现假设A点是上表面面积最小的不透明薄膜边缘上的一点.由题意,在A点刚好发生全反射,故αA                                                                                                            

设线段OA在立方体上表面的投影长为RA,由几何关系有sin θA                                                                                                  

式中a为玻璃立方体的边长.由①②③式得

RA                                                                                                   

由题给数据得RA                                                                                                 

由题意,上表面所镀的面积最小的不透明薄膜应是半径为RA的圆.所求的镀膜面积S′与玻璃立方体的表面积S之比为                                         

由⑤⑥得                                                                                             .⑦

答案 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网