题目内容

小船从A码头出发,沿垂直于河岸的方向渡河,若小河宽为d,小船渡河速度v恒定,河水中各点水流速大小与各点到较近河岸边的距离成正比,v=kx,x是各点到近岸的距离(x≤d/2,k为常量),要使小船能够到达距A正对岸为s的B码头.则下列说法中正确的是( )

A.小船渡河的速度
B.小船渡河的速度
C.小船渡河的时间为
D.小船渡河的时间为
【答案】分析:将小船的运动分解为垂直于河岸方向和沿河岸方向,在垂直于河岸方向上,速度不变,位移随时间均匀增大,则水流速度随时间先均匀增大后均匀减小,分运动与合运动具有等时性,根据沿河岸方向的运动求出运行的时间,再根据t=求出小船渡河的速度.
解答:解:小船在沿河岸方向的速度随时间先均匀增大后均匀减小,前内和后内的平均速度为,则渡河的时间t=.渡河速度.故A、C正确,B、D错误.
故选AC.
点评:解决本题的关键知道在垂直于河岸方向上做匀速直线运动,位移随时间均匀增大,根据河水中各点水流速大小与各点到较近河岸边的距离成正比,则水流速度随时间先均匀增大后均匀减小,从而根据匀变速直线运动求出平均速度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网