ÌâÄ¿ÄÚÈÝ
14£®£¨1£©Ç󻬿é´Ó¾²Ö¹Êͷŵ½Ó뵯»ÉÉ϶˽Ӵ¥Ë²¼äËù¾ÀúµÄʱ¼ä
£¨2£©Èô»¬¿é´Ó¾²Ö¹Êͷŵ½ËÙ¶È×î´óʱµÄ¹ý³ÌÖУ¬¿Ë·þµ¯»ÉµÄµ¯Á¦Ëù×öµÄ¹¦W=0.96J£¬Ç󻬿éÔÚÑØÐ±ÃæÏòÏÂÔ˶¯µÄ×î´óËٶȦÔmax
£¨3£©Èô»¬¿éÔÚÐ±ÃæÉÏ·´¸´Ô˶¯¶à´Îºó×îÖÕÍ£ÔÚµÚ£¨2£©ÎÊÖÐËùÊöËÙ¶ÈΪ×î´óλÖô¦£¬ÇóÕû¸ö¹ý³ÌÖл¬¿éÔÚÐ±ÃæÉÏÔ˶¯µÄ×Ü·³ÌS£®
·ÖÎö £¨1£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£¬ÓÉÎ»ÒÆ¹«Ê½Çó³öÔ˶¯Ê±¼ä£®
£¨2£©»¬¿éËùÊܺÏÁ¦ÎªÁãʱËÙ¶È×î´ó£¬ÓÉÆ½ºâÌõ¼þÇó³ö»¬¿éËÙ¶È×î´óʱ£¬µ¯»ÉµÄѹËõÁ¿£¬È»ºóÓɶ¯Äܶ¨ÀíÇó³ö×î´óµ¯ÐÔÊÆÄÜ£®
£¨3£©»¬¿éÔÚÔ˶¯¹ý³ÌÖÐÒª¿Ë·þ×èÁ¦×ö¹¦£¬°Ñ»úеÄÜÓëµçÊÆÄÜת»¯ÎªÄÚÄÜ£¬ÓÉÄÜÁ¿Êغ㶨ÂÉ¿ÉÒÔÇó³ö»¬¿éµÄ·³Ì
½â´ð ½â£º£¨1£©¶Ô»¬¿é£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
ÑØÐ±Ãæ·½Ïò»¬¿éµÄ¼ÓËÙ¶È£ºa=$\frac{qE}{m}$+gsin¦È-¦Ìgcos¦È£¬
ÓÉËÙ¶ÈÎ»ÒÆ¹«Ê½¿ÉµÃ£ºs0=$\frac{1}{2}$at2£¬
½âµÃ£¬Ê±¼ä£ºt=$\sqrt{\frac{2m{s}_{0}}{qE+mgsin¦È-¦Ìmgcos¦È}}$=0.5s£»
£¨2£©µ±»¬¿éËÙ¶È×î´óʱ£¬»¬¿éÊܵ½µÄºÏÁ¦ÎªÁ㣬
ÔòqE+mgsin¦È=kx£¬½âµÃ£ºx=$\frac{qE+mgsin¦È}{k}$£¬
´Ó»¬¿é¿ªÊ¼Ô˶¯µ½ËÙ¶È×î´ó¹ý³ÌÖУ¬Óɶ¯Äܶ¨ÀíµÃ£º
£¨qE+mgsin¦È£©£¨x+s0£©-¦Ìmgcos¦È•£¨x+s0£©$\frac{1}{2}$m¦Ômax2+W£¬
½âµÃ£º¦Ômax¡Ö3.4m/s£»
£¨3£©»¬¿é×îÖÕÒª¾²Ö¹£¬ÓÉÄÜÁ¿Êغ㶨Âɵãº
£¨qE+mgsin¦È£©s0=¦Ìmgcos¦È•s£¬
½âµÃ£¬»¬¿éµÄ·³Ì£ºs=$\frac{£¨qE+mgsin¦È£©{s}_{0}}{¦Ìmgcos¦È}$=2.04m£»
´ð£º£¨1£©»¬¿é´Ó¾²Ö¹Êͷŵ½Ó뵯»ÉÉ϶˽Ӵ¥Ë²¼äËù¾ÀúµÄʱ¼äΪ0.5s£®
£¨2£©»¬¿éÔÚÑØÐ±ÃæÏòÏÂÔ˶¯µÄ×î´óËٶȦÔmaxΪ3.4m/s£®
£¨3£©Õû¸ö¹ý³ÌÖл¬¿éÔÚÐ±ÃæÉÏÔ˶¯µÄ×Ü·³ÌsΪ2.04m£®
µãÆÀ ±¾Ì⿼²éÁËÇ󻬿éµÄÔ˶¯Ê±¼ä¡¢µ¯»ÉµÄµ¯ÐÔÊÆÄÜ¡¢»¬¿éµÄ·³Ì£¬·ÖÎöÇå³þ»¬¿éÔ˶¯¹ý³ÌÊÇÕýÈ·½âÌâµÄ¹Ø¼ü£¬Ó¦ÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Æ½ºâÌõ¼þ¡¢Ô˶¯Ñ§¹«Ê½¡¢¶¯Äܶ¨Àí¡¢ÄÜÁ¿Êغ㶨Âɼ´¿ÉÕýÈ·½âÌ⣮
| A£® | ƽÅ×Ô˶¯Ë®Æ½·½ÏòµÄ·ÖÔ˶¯ÊÇÔÈËÙÖ±ÏßÔ˶¯ | |
| B£® | ƽÅ×Ô˶¯Ë®Æ½·½ÏòµÄ·ÖÔ˶¯ÊÇÔȼÓËÙÖ±ÏßÔ˶¯ | |
| C£® | ƽÅ×Ô˶¯ÊúÖ±·½ÏòµÄ·ÖÔ˶¯ÊÇ×ÔÓÉÂäÌåÔ˶¯ | |
| D£® | ƽÅ×Ô˶¯ÊúÖ±·½ÏòµÄ·ÖÔ˶¯ÊÇÔÈËÙÖ±ÏßÔ˶¯ |
| A£® | ²¼ÀÊÔ˶¯ºÍÀ©É¢ÏÖÏó¶¼ÊÇÔÚÆøÌå¡¢ÒºÌå¡¢¹ÌÌåÖз¢Éú | |
| B£® | ²¼ÀÊÔ˶¯ºÍÀ©É¢ÏÖÏó¶¼ÊÇ·Ö×ÓµÄÔ˶¯ | |
| C£® | ²¼ÀÊÔ˶¯ºÍÀ©É¢ÏÖÏó¶¼ÊÇζÈÔ½¸ßÔ½Ã÷ÏÔ | |
| D£® | À©É¢ÏÖÏóÊÇÍâ½ç×÷Óã¨Èç¶ÔÁ÷¡¢ÖØÁ¦×÷Óã©ÒýÆðµÄ |
| A£® | 0£¬$\frac{\sqrt{2}}{2}$qh | B£® | $\frac{2}{3}$mg£¬$\sqrt{2}$qh | C£® | $\frac{2}{3}$mg£¬$\frac{\sqrt{2}}{2}$qh | D£® | 0£¬2$\sqrt{2}$qh |