ÌâÄ¿ÄÚÈÝ
·ÖÎö£ºÒÔСÇòΪÑо¿¶ÔÏ󣬷ÖÎöÊÜÁ¦Çé¿ö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£¬¼´ÎªÐ¡³µµÄ¼ÓËÙ¶È£¬²¢Çó³öϸÏß¶ÔСÇòµÄÀÁ¦T£®ÔÙ¶ÔÖÊÁ¿Îªm1µÄľ¿éÑо¿£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɺͺú¿Ë¶¨ÂÉÇó³öµ¯»ÉµÄÐαäÁ¿x£®
½â´ð£º½â£ºÒÔСÇòΪÑо¿¶ÔÏ󣬷ÖÎöÊÜÁ¦Çé¿ö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
£º
m2gtan¦È=m2a£¬µÃ£ºa=gtan¦È
T=
ÔÙÒÔÖÊÁ¿Îªm1µÄľ¿éΪÑо¿¶ÔÏó£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
F=m1a
ÓÖÓɺú¿Ë¶¨ÂɵãºF=kx
½âµÃx=
´ð£ºµ¯»ÉµÄÐαäÁ¿Îª
£¬Ï¸Ïß¶ÔСÇòµÄÀÁ¦Îª
£®
m2gtan¦È=m2a£¬µÃ£ºa=gtan¦È
T=
| m2g |
| cos¦È |
ÔÙÒÔÖÊÁ¿Îªm1µÄľ¿éΪÑо¿¶ÔÏó£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
F=m1a
ÓÖÓɺú¿Ë¶¨ÂɵãºF=kx
½âµÃx=
| m1gtan¦È |
| k |
´ð£ºµ¯»ÉµÄÐαäÁ¿Îª
| m1gtan¦È |
| k |
| m2g |
| cos¦È |
µãÆÀ£º±¾ÌâҪץסľ¿éÓëСÇò¡¢³µµÄ¼ÓËٶȶ¼Ïàͬ£¬Áé»îÑ¡ÔñÑо¿¶ÔÏ󣬲ÉÓøôÀë·¨´¦Àí£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿