题目内容
在真空室内取坐标系xOy,在x轴上方存在二个方向都垂直于纸面向外的磁场区Ⅰ和Ⅱ(如图),平行于x轴的虚线MM’和NN’是它们的边界线,两个区域在y方向上的宽度都为d、在x方向上都足够长.Ⅰ区和Ⅱ区内分别充满磁感应强度为B和(1)如果粒子只是在Ⅰ区内运动而没有到达Ⅱ区,那么粒子的速度v满足什么条件?粒子运动了多长时间到达x轴?
(2)如果粒子运动过程经过Ⅱ区而且最后还是从x轴离开磁场,那么粒子的速度v又满足什么条件?并求这种情况下粒子到达x轴的坐标范围?
【答案】分析:该题(1)中,粒子在一个磁场中运动,再次等待x轴时,用的时间是半个周期,该问较容易.(2)问中,两部分的磁场强度不同,故半径也不同,这是解题的关键.根据半径的公式:
,可知粒子在MN之间的半径是粒子在OM之间半径的1.5倍,因此要认真仔细地做出运动的图线,找出各物理量之间的关系,把两个临界条件(恰好到达M和恰好到达N)代入公式算出结果.
解答:解:粒子恰好没有到达M的轨迹如图,则:R=d
由洛伦兹力提供向心力:

得:
粒子只是在Ⅰ区内运动而没有到达Ⅱ区,粒子的速度应满足:
又根据
及
得:
(2)粒子经过Ⅱ区而且刚好能从x轴离开磁场的轨迹如图
依题意,有
及 
由几何关系得:
整理得:
设此时粒子离开磁场的坐标为L,则
联立以上3个公式,整理得:
故粒子速度应满足:
粒子到达x轴的坐标范围为:
答:(1)粒子的速度v满足:
粒子运动的时间:
;(2)该情况下粒子的速度v又满足:
;粒子到达x轴的坐标范围为:
点评:该题考查带电粒子在匀强磁场中的运动,(1)只有一个磁场,较简单,(2)有两个强度不同的磁场,要仔细地做出运动的图线,并结合两个临界条件才能正确解题.该题难度较大,属于难题.
解答:解:粒子恰好没有到达M的轨迹如图,则:R=d
由洛伦兹力提供向心力:
得:
粒子只是在Ⅰ区内运动而没有到达Ⅱ区,粒子的速度应满足:
又根据
得:
(2)粒子经过Ⅱ区而且刚好能从x轴离开磁场的轨迹如图
依题意,有
由几何关系得:
整理得:
设此时粒子离开磁场的坐标为L,则
联立以上3个公式,整理得:
故粒子速度应满足:
粒子到达x轴的坐标范围为:
答:(1)粒子的速度v满足:
点评:该题考查带电粒子在匀强磁场中的运动,(1)只有一个磁场,较简单,(2)有两个强度不同的磁场,要仔细地做出运动的图线,并结合两个临界条件才能正确解题.该题难度较大,属于难题.
练习册系列答案
相关题目