题目内容

6.板长为L=0.12m的带电平行金属板A、B,已知A板带负电,电场强度E=1×103V/m,放置于竖直平面内的xOy坐标系中,y轴竖直向上,金属板平面与水平面成37°角,A板的一端在坐标原点上,且中心开有小孔Q,如图所示.质量为m=5×10-3kg、带电量为+q=4×10-5C的小球从y轴上某点P水平抛出,恰好垂直于A板从其中心小孔Q进入两板间,则小球刚好从B板边缘射出电场,计算时sin37°=0.6,cos37°=0.8,g=10m/s2.求:
(1)P点的坐标和小球抛出时的速度v0
(2)A、B两板所加电压UAB

分析 (1)小球做平抛运动,将小球的运动分解,即可求出;
(2)对小球进行受力分析,求出极板之间的电场强度,然后由U=Ed即可求出电压UAB

解答 解:(1)由于小球恰好垂直于A板从其中心小孔Q进入面板间,所以小球的速度与竖直方向之间的夹角是37°,
根据速度的分解可得:v0=vytan37°
小球在水平方向的位移:x=v0t=$\frac{L}{2}$•cos37°
竖直方向的位移:h=$\frac{{v}_{y}}{2}t$
联立解得:h=$\frac{Lcos37°}{3}$=$\frac{0.12×0.8}{3}$m=0.032m
P点的纵坐标:y=$\frac{1}{2}$Lsin37°+h=$\frac{1}{2}$×0.12×0.6+0.032=0.068m,则P点的坐标为(0,0.068m).
由h=$\frac{1}{2}g{t}^{2}$得:t=$\sqrt{\frac{2h}{g}}$=$\sqrt{\frac{2×0.032}{10}}$s=0.08s
则 v0=$\frac{Lcos37°}{2t}$=$\frac{0.12×0.8}{2×0.08}$=0.6m/s
(2)由题意可知,若小球在两板间所受电场力与重力的合力恰与水平面成37°角,则小球刚好从B板边缘射出电场,则A极板必须带负电,小球受到的合力的方向平行于AB的方向斜向下,如图:
此时:mg-qEcos37°=may
    qEsin37°=max
   $\frac{{a}_{y}}{{a}_{x}}$=tan37°
联立解得:qE=0.8mg
 ma=mgsin37°=0.6mg
所以:a=0.6g
则 U=Ed=$\frac{0.8mgd}{q}$
粒子恰好从B的边缘射出,则:$\frac{1}{2}$at′2=$\frac{1}{2}L$,d=v•t′,v=$\frac{{v}_{0}}{sin37°}$
联立以上三式得:d=$\frac{5}{3}$L
所以:U=$\frac{0.8mg}{q}$•$\frac{5}{3}$L=$\frac{4mgL}{3q}$
则UAB=-U=-$\frac{4mgL}{3q}$=$\frac{4×5×1{0}^{-3}×10×0.12}{3×4×1{0}^{-5}}$=-50V
答:(1)P点的坐标是(0,0.068m),小球抛出时的速度v0是0.6m/s.
(2)A、B两板所加电压UAB是-50V.

点评 该题综合考查平抛运动、受力分析与带电粒子在电场中的偏转,其中结合题目的要求,正确分析出小球在电场中受到的合力的方向,是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网