ÌâÄ¿ÄÚÈÝ
A¡¢S¶Ï¿ªÊ±£¬½ðÊô°ôÑØµ¼¹ìÏ»¬µÄ¼ÓËÙ¶ÈΪ
| ||||||
B¡¢½«½ðÊô°ôÈÔ´ÓAA¡ä´¦Óɾ²Ö¹¿ªÊ¼»¬Ï£¬S±ÕºÏʱ£¬½ðÊô°ô¸ÕÀ뿪¹ìµÀʱµÄËÙ¶ÈΪx2
| ||||||
C¡¢½«½ðÊô°ôÈÔ´ÓAA¡ä´¦Óɾ²Ö¹¿ªÊ¼»¬Ï£¬S±ÕºÏʱ£¬µç×èRÉϲúÉúµÄÈÈÁ¿Q=
| ||||||
| D¡¢CC¡äÒ»¶¨ÔÚAA¡äµÄÉÏ·½ |
·ÖÎö£º½ðÊô°ô´Ó¹ìµÀÉÏ»¬µ½µ×¶Ëºó£¬½«×öƽÅ×Ô˶¯£¬¸ù¾ÝƽÅ×Ô˶¯µÄ֪ʶ£¬¿ÉÒÔÇó³ö°ô»¬µ½µ×¶ËʱµÄËÙ¶È´óС£»¿ª¹Ø±ÕºÏºó£¬½ðÊô°ôÏ»¬Ê±£¬ÐèÒª¿Ë·þ°²ÅàÁ¦×ö¹¦£¬Òò´ËƽÅ×µÄˮƽ¾àÀ뽫¼õС£¬½øÒ»²½¸ù¾Ý¹¦ÄܹØÏµ¿ÉÒÔÇó³öµç×èRÉϲúÉúµÄÈÈÁ¿£®
½â´ð£º½â£ºA¡¢S¶Ï¿ªÊ±£¬½ðÊô°ôÑØÐ±ÃæÏ»¬Ê±Óе½µ×¶Ëºó×öƽÅ×Ô˶¯£¬ÓУºh=
gt2 ¢Ù
x1=v1t ¢Ú
½âµÃ£ºv1=x1
¸ù¾Ý
=2as£¬µÃ£ºa=
£¬¹ÊA´íÎó£»
B¡¢ÓÉÓÚ°ôÈÔÂäÔÚË®Æ½ÃæÉϵÄEE¡ä´¦£¬ËµÃ÷ƽÅ×ʱ³õËÙ¶ÈÓë´ÓAA¡ä´¦Óɾ²Ö¹¿ªÊ¼»¬Ïµ½µ×¶ËʱËÙ¶ÈÏàͬ£¬¹Êv2=x2
£¬¹ÊBÕýÈ·£»
C¡¢¿ª¹ØS±ÕºÏ£¬½ðÊô°ô´ÓAA¡ä´¦Óɾ²Ö¹»¬Ï£¬°ôÂäÔÚË®Æ½ÃæÉϵÄEE¡ä´¦£¬¹Ê´Ë¹ý³Ì°ôƽÅ×Ô˶¯µÄ³õËÙ¶ÈΪ£º
v2=x2
£®
¸ù¾ÝÄÜÁ¿Êغ㶨Âɵãº
¿ª¹ØS¶Ï¿ªÊ±£¬½ðÊô°ô´ÓAA¡ä´¦»¬µ½PP¡ä´¦µÄ¹ý³Ì£¬ÓУºmgs?sin¦Á-fs=
m
¿ª¹ØS±ÕºÏʱ£¬½ðÊô°ô´ÓAA¡ä´¦»¬µ½PP¡ä´¦µÄ¹ý³Ì£¬ÓУºmgs?sin¦Á=Q+fs+
m
ÁªÁ¢ÉÏÁ½Ê½µÃ£ºQ=
m
-
m
=
m[(x1
)2-(x2
))2]=
(
-
)¹ÊCÕýÈ·£»
D¡¢µ±¿ª¹Ø±ÕºÏʱ£¬ÓÐÒ»²¿·Ö»úеÄÜҪת»¯ÎªÄÚÄÜ£¬ËùÒÔ¿ªÊ¼Ê±µÄÖØÁ¦ÊÆÄÜÒª´óÓÚ¿ª¹Ø¶Ï¿ªÊ±µÄÖØÁ¦ÊÆÄÜ£¬¼´CC¡äÒ»¶¨ÔÚAA¡äµÄÉÏ·½£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºD
| 1 |
| 2 |
x1=v1t ¢Ú
½âµÃ£ºv1=x1
|
¸ù¾Ý
| v | 2 1 |
| ||
| 4hs |
B¡¢ÓÉÓÚ°ôÈÔÂäÔÚË®Æ½ÃæÉϵÄEE¡ä´¦£¬ËµÃ÷ƽÅ×ʱ³õËÙ¶ÈÓë´ÓAA¡ä´¦Óɾ²Ö¹¿ªÊ¼»¬Ïµ½µ×¶ËʱËÙ¶ÈÏàͬ£¬¹Êv2=x2
|
C¡¢¿ª¹ØS±ÕºÏ£¬½ðÊô°ô´ÓAA¡ä´¦Óɾ²Ö¹»¬Ï£¬°ôÂäÔÚË®Æ½ÃæÉϵÄEE¡ä´¦£¬¹Ê´Ë¹ý³Ì°ôƽÅ×Ô˶¯µÄ³õËÙ¶ÈΪ£º
v2=x2
|
¸ù¾ÝÄÜÁ¿Êغ㶨Âɵãº
¿ª¹ØS¶Ï¿ªÊ±£¬½ðÊô°ô´ÓAA¡ä´¦»¬µ½PP¡ä´¦µÄ¹ý³Ì£¬ÓУºmgs?sin¦Á-fs=
| 1 |
| 2 |
| v | 2 1 |
¿ª¹ØS±ÕºÏʱ£¬½ðÊô°ô´ÓAA¡ä´¦»¬µ½PP¡ä´¦µÄ¹ý³Ì£¬ÓУºmgs?sin¦Á=Q+fs+
| 1 |
| 2 |
| v | 2 2 |
ÁªÁ¢ÉÏÁ½Ê½µÃ£ºQ=
| 1 |
| 2 |
| v | 2 1 |
| 1 |
| 2 |
| v | 2 2 |
| 1 |
| 2 |
|
|
| mg |
| 4h |
| x | 2 1 |
| x | 2 2 |
D¡¢µ±¿ª¹Ø±ÕºÏʱ£¬ÓÐÒ»²¿·Ö»úеÄÜҪת»¯ÎªÄÚÄÜ£¬ËùÒÔ¿ªÊ¼Ê±µÄÖØÁ¦ÊÆÄÜÒª´óÓÚ¿ª¹Ø¶Ï¿ªÊ±µÄÖØÁ¦ÊÆÄÜ£¬¼´CC¡äÒ»¶¨ÔÚAA¡äµÄÉÏ·½£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºD
µãÆÀ£º±¾Ìâ½áºÏƽÅ×Ô˶¯¿¼²éÁ˵ç´Å¸ÐÓ¦£¬¿¼²éµãÐÂÓ±£¬Óд´ÐÂÐÔ£¬Æ½Ê±Òª¶à¼ÓÇ¿Õâ·½ÃæµÄÁ·Ï°£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿