ÌâÄ¿ÄÚÈÝ

1£®Ò»Á¾Ð¡Æû³µÔÚÒ»¶ÎƽֱµÄ¹«Â·ÉÏ×öÔȼÓËÙÖ±ÏßÔ˶¯£®ÒÑÖªÆû³µ¾­¹ýAµãʱµÄËÙ¶ÈΪ1m/s£¬¾­¹ýBµãʱµÄËÙ¶ÈΪ7m/s£®ÔòÆû³µ´ÓAµ½BµÄÔ˶¯¹ý³ÌÖУ¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Æû³µ¾­¹ýABÎ»ÒÆÖеãʱËÙ¶ÈÊÇ4m/s
B£®Æû³µ¾­¹ýABÖмäʱ¿ÌµÄËÙ¶ÈÊÇ4m/s
C£®Æû³µÇ°Ò»°ëʱ¼ä·¢ÉúÎ»ÒÆÊǺóÒ»°ëʱ¼ä·¢ÉúÎ»ÒÆµÄÒ»°ë
D£®ºÏÍâÁ¦Ç°Ò»°ëÎ»ÒÆ¶ÔÆû³µËù×öµÄ¹¦ÊǺóÒ»°ëÎ»ÒÆËù×ö¹¦µÄ2±¶

·ÖÎö ¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄËÙ¶ÈÎ»ÒÆ¹«Ê½Çó³ö¾­¹ýÖеãλÖÃʱµÄËÙ¶È´óС£®¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄƽ¾ùËÙ¶ÈÍÆÂÛÇó³öÖмäʱ¿ÌµÄ˲ʱËÙ¶È£®¸ù¾Ý¶¯Äܶ¨ÀíµÃ³öºÏÁ¦×ö¹¦µÄ¹ØÏµ£®

½â´ð ½â£ºA¡¢ÉèÖеãλÖõÄËÙ¶ÈΪv£¬¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½µÃ£¬${v}^{2}-{{v}_{A}}^{2}=2a\frac{x}{2}$£¬${{v}_{B}}^{2}-{v}^{2}=2a\frac{x}{2}$£¬ÁªÁ¢Á½Ê½½âµÃv=$\sqrt{\frac{{{v}_{A}}^{2}+{{v}_{B}}^{2}}{2}}=\sqrt{\frac{1+49}{2}}m/s=5m/s$£¬¹ÊA´íÎó£®
B¡¢¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯Æ½¾ùËٶȵÄÍÆÂÛÖª£¬Æû³µ¾­¹ýABÖмäʱ¿ÌµÄ˲ʱËÙ¶È$v¡ä=\frac{{v}_{A}+{v}_{B}}{2}=\frac{1+7}{2}m/s=4m/s$£¬¹ÊBÕýÈ·£®
C¡¢Æû³µÔÚǰһ°ëʱ¼äÄÚ·¢ÉúµÄÎ»ÒÆ${x}_{1}=\frac{{v}_{A}+v¡ä}{2}t=\frac{1+4}{2}t=2.5t$£¬ºóÒ»°ëʱ¼äÄÚ·¢ÉúµÄÎ»ÒÆ${x}_{2}=\frac{v¡ä+{v}_{B}}{2}t=\frac{4+7}{2}t=5.5t$£¬Æû³µÔÚǰһ°ëʱ¼äÄÚµÄÎ»ÒÆ²»ÊǺóÒ»°ëʱ¼äÄÚÎ»ÒÆµÄÒ»°ë£¬¹ÊC´íÎó£®
D¡¢¸ù¾Ý¶¯Äܶ¨ÀíÖª£¬Ç°Ò»°ëÎ»ÒÆÄÚºÏÁ¦×ö¹¦${W}_{1}=\frac{1}{2}m{v}^{2}-\frac{1}{2}m{{v}_{A}}^{2}=\frac{1}{2}m¡Á£¨25-1£©=12m$£¬ºóÒ»°ëÎ»ÒÆÄÚºÏÁ¦×ö¹¦${W}_{2}=\frac{1}{2}m{{v}_{B}}^{2}-\frac{1}{2}m{v}^{2}=\frac{1}{2}m¡Á£¨49-25£©=12m$£¬¿ÉÖªºÏÁ¦×ö¹¦ÏàµÈ£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºB£®

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕÔȱäËÙÖ±ÏßÔ˶¯µÄÔ˶¯Ñ§¹«Ê½ºÍÍÆÂÛ£¬²¢ÄÜÁé»îÔËÓã¬ÄѶȲ»´ó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø