题目内容
| 3 |
| 5 |
| 4 |
| 5 |
| 4 |
| 5 |
| 3 |
| 5 |
分析:小球受重力和支持力,靠两个力的合力提供向心力,根据平行四边形定则求出支持力之比,根据牛顿第二定律求出线速度和周期之比.
解答:解:A、根据平行四边形定则得,N=
,则
=
=
.故A正确.
B、根据mgtanθ=m
=mr(
)2,r=Rsinθ,解得v=
,T=2π
.则
=
,
=
.则动能之比为64:27.故B、C错误.
D、根据mgtanθ=m
得,动能EK=
mv2=
mgRsinθtanθ,重力势能EP=mgR(1-cosθ),则机械能E=mgR(1+
sinθtanθ-cosθ),则
=
.故D正确.
故选AD.
| mg |
| cosθ |
| NA |
| NB |
| cos37° |
| cos53° |
| 4 |
| 3 |
B、根据mgtanθ=m
| v2 |
| r |
| 2π |
| T |
| gRsinθtanθ |
|
| vA |
| vB |
|
| TA |
| TB |
| ||
| 2 |
D、根据mgtanθ=m
| v2 |
| r |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| EA |
| EB |
| 112 |
| 51 |
故选AD.
点评:解决本题的关键搞清向心力的来源,运用牛顿第二定律得出线速度、周期的关系.知道机械能等于动能和势能的总和.
练习册系列答案
相关题目