题目内容

如图所示,两个半径不同而内壁光滑的半圆轨道固定于地面,一个小球先后从与球心在同一水平高度的A、B两点由静止开始自由下滑,通过轨道最低点时(  )
分析:小球从与球心在同一水平高度的A、B两点由静止开始自由下滑过程中,受到重力和支持力作用,但只有重力做功,机械能守恒,由机械能守恒定律可求出小球到最低点的速度,然后由向心加速度公式求向心加速度,由牛顿第二定律求出支持力,进而来比较向心加速度大小和压力大小.
解答:解:A、设半圆轨道的半径为r,小球到最低点的速度为v,由机械能守恒定律得:
mgr=
1
2
mv2
…①
在最低点,由牛顿第二定律得:
F-mg=m
v2
r
…②
联立①②解得:FN=3mg
由牛顿第三定律知压力为3mg,与半径无关,所以小球对轨道的压力相同.因此,A正确,B错误.
C、小球的向心加速度为:an=
v2
r
…③
联立①③两式解得:an=2g,加速度与半径无关,因此此时小球的向心加速度相等,所以C错误.
D、由上可知,D错误.
故选:A
点评:小球下滑,机械能守恒,机械能守恒定律、牛顿第二定律、向心力公式分别求出小球在最低点的压力和向心加速度,可以看出它们与圆轨道的半径无关.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网