题目内容
18.在如图所示的电路中,有一理想的降压变压器,其匝数比为3:1,一额定功率为6W、9V的灯泡L1与变压器的原线圈串接,在变压器的副线圈两端并联接入三个与L1完全相同的灯泡L2、L3、L4,两个理想的交流电表按如图的方式接入电路,已知理想变压器原线圈两端的电压随时间变化的规律如图所示,则下列正确的是( )| A. | mn两点间的所加电压的瞬时值为Uab=27$\sqrt{2}$sin100πt(V) | |
| B. | L1、L2、L3、L4均正常发光 | |
| C. | 只有L2、L3、L4正常发光 | |
| D. | 整个电路消耗的总功率为18W |
分析 由四只灯泡均正常发光,则可求得原副线圈的电流,求得匝数之比,由图象中的周期求得频率,各表的示数为有效值.
解答 解:A、由图乙可得:T=0.02s,则$ω=\frac{2π}{T}=100πrad/s$,所以原线圈所加电压的瞬时值为U1=27$\sqrt{2}$sin100πt(V),根据$\frac{{U}_{1}}{{U}_{2}}=\frac{{n}_{1}}{{n}_{2}}$,得:${U}_{2}=\frac{{n}_{2}}{{n}_{1}}{U}_{1}=\frac{1}{3}×\frac{27\sqrt{2}}{\sqrt{2}}V=9V$,所以灯泡L2、L3、L4正常发光,又因为匝数比为3:1,根据$\frac{{I}_{1}}{{I}_{2}}=\frac{{n}_{2}}{{n}_{1}}$=$\frac{1}{3}$,所以通过四个灯泡的电流始终相等,所以灯泡L1也正常发光,所以${U}_{mn}=(9\sqrt{2}+27\sqrt{2})sin100πt=36\sqrt{2}sin100t$V,故A错误;
B、C、根据A中分析可知L1、L2、L3、L4均正常发光,故B正确,C错误;
D、整个电路消耗的总功率为:P′=4P=4×6W=24W,故D错误;
故选:B.
点评 考查变压器的基本内容,明确电流电压与匝数的关系,电表的示数为有效值,另外要特别注意电压与线圈匝数比的关系式中,电压为原副线圈两端的电压.
练习册系列答案
相关题目