题目内容

如图所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则   

A.该盒子做匀速圆周运动的周期一定小于2π
B.该盒子做匀速圆周运动的周期一定等于2π
C.盒子在最低点时盒子与小球之间的作用力大小可能小于2mg
D.盒子在最低点时盒子与小球之间的作用力大小可能大于2mg

B

解析试题分析: 在最高点时盒子与小球之间恰好无作用力,说明此时恰好只有小球的重力作为向心力,由得,周期,所以A错误,而B正确.盒子在最低点时受重力和支持力的作用,由,和可得,,所以C、D均错误.
故选:B.
考点:牛顿第二定律在圆周运动中的应用.
点评:物体做匀速圆周运动,小球在最高点时盒子与小球之间恰好无作用力,说明此时恰好只有小球的重力作为向心力,这是解决这道题的关键,再根据最高点和最低点时受力的不同,根据向心力的公式列方程求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网