题目内容
如图a所示,用一水平力F拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F变化的图象如图乙所示,根据图b中所提供的信息可以计算出( )

| A.物体的质量 |
| B.斜面的倾角 |
| C.物体能静止在斜面上所施加的最小外力 |
| D.加速度为6 m/s2时物体的速度 |
物体受重力、拉力和支持力,根据牛顿第二定律a=
=
-gsinθ.图线的纵轴截距为-6m/s2,则gsinθ=6,解得斜面的倾角θ=37°.
图线的斜率k=
=
=
,因为sinθ=0.6,则cosθ=0.8,所以m=2kg.
当物体静止时,有Fcosθ=mgsinθ,则施加的最小外力F=mgtanθ=15N,
物体做加速度变化的运动,速度无法求出.故ABC正确,D错误.
故选ABC.
| Fcosθ-mgsinθ |
| m |
| Fcosθ |
| m |
图线的斜率k=
| cosθ |
| m |
| 6-2 |
| 30-20 |
| 2 |
| 5 |
当物体静止时,有Fcosθ=mgsinθ,则施加的最小外力F=mgtanθ=15N,
物体做加速度变化的运动,速度无法求出.故ABC正确,D错误.
故选ABC.
练习册系列答案
相关题目
如图(a)所示,用一水平外力F拉着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F变化的图像如图(b)所示,若重力加速度g取10m/s2.根据图(b)中所提供的信息可以计算出( )![]()
| A.物体的质量 |
| B.斜面的倾角 |
| C.物体能静止在斜面上所施加的最小外力 |
| D.加速度为6m/s2时物体的速度 |