ÌâÄ¿ÄÚÈÝ
3£®£¨1£©ÀºÇòºÍ°ôÇòµÄÖÊÁ¿±ÈÖµ$\frac{M}{m}$Ó¦ÊǶàÉÙ£¿
£¨2£©´Ëºó°ôÇòÄÜÉÏÉý¶à¸ß£¿
·ÖÎö £¨1£©Ïȸù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½ÁÐʽÇó½âÅöײµØÃæÇ°ËÙ¶È´óС£¬¶ÔÀºÇòÓë°ôÇòµÄÅöײ¹ý³Ì£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂɺͻúеÄÜÊØºã¶¨ÂÉÁÐʽÇó½âÖÊÁ¿Ö®±ÈºÍ°ôÇòµÄ·´µ¯ËÙ¶È£®
£¨2£©´Ëºó°ôÇòÊúÖ±ÉÏÅ×£¬¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½ÁÐʽÇó½â×î´ó¸ß¶È£®
½â´ð ½â£º£¨1£©×ÔÓÉÏÂÂä¹ý³Ì£¬ÓУº
v2=2gh
½âµÃ£º
v=$\sqrt{2gh}$
ÀºÇò·´µ¯µÄËÙ¶ÈΪ$\sqrt{2gh}$£¬¹æ¶¨ÏòÉÏΪÕý·½Ïò£¬ÀºÇòÓë°ôÇòµÄÅöײ¹ý³Ì£¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ£¬ÓУº
M$\sqrt{2gh}$-m$\sqrt{2gh}$=mv1
¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉ£¬ÓУº
$\frac{1}{2}£¨M+m£©{v}^{2}=\frac{1}{2}m{v}_{1}^{2}$
ÁªÁ¢½âµÃ£º
$\frac{M}{m}$=3
v1=2$\sqrt{2gh}$
£¨2£©´Ëºó°ôÇòÊúÖ±ÉÏÅ×£¬¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½£¬ÓУº
${0}^{2}-{v}_{1}^{2}=2£¨-g£©H$
½âµÃ£º
H=$\frac{{v}_{1}^{2}}{2g}$=4h
´ð£º£¨1£©ÀºÇòºÍ°ôÇòµÄÖÊÁ¿±ÈÖµ$\frac{M}{m}$Ó¦ÊÇ3£»
£¨2£©´Ëºó°ôÇòÄÜÉÏÉý4h¸ß£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á½¸öСÇòµÄÔ˶¯¹æÂÉ£¬×¢ÒâÅöײÊǵ¯ÐÔÅöײ£¬½áºÏÄÜÁ¿Êغ㶨ÂɺͶ¯Á¿Êغ㶨ÂÉÁÐʽÇó½â¼´¿É£®
| A£® | aµÄ¼ÓËÙ¶ÈΪ0 | B£® | aµÄ¼ÓËÙ¶ÈΪ$\frac{F}{m}$ | C£® | bµÄ¼ÓËÙ¶ÈΪ0 | D£® | bµÄ¼ÓËÙ¶ÈΪ$\frac{F}{3m}$ |
| A£® | Á½¿ÅÎÀÐǵÄÏßËÙ¶È´óСһ¶¨ÏàµÈ | B£® | Á½¿ÅÎÀÐǵÄÏßËÙ¶È´óС¿ÉÄÜÏàµÈ | ||
| C£® | ÌìÌåA¡¢BµÄÃܶÈÒ»¶¨ÏàµÈ | D£® | ÌìÌåA¡¢BµÄÃܶÈÒ»¶¨²»ÏàµÈ |
| A£® | ËùÓÐÐÐÐǶ¼ÔÚͬһÍÖÔ²¹ìµÀÉÏÈÆÌ«ÑôÔ˶¯ | |
| B£® | ÐÐÐÇÈÆÌ«ÑôÔ˶¯Ê±£¬Ì«ÑôλÓÚÐÐÐǹìµÀµÄÖÐÐÄ´¦ | |
| C£® | ÀëÌ«ÑôÔ½½üµÄÐÐÐÇÔ˶¯ÖÜÆÚÔ½¶Ì | |
| D£® | ËùÓÐÐÐÐǵĹìµÀµÄ°ë³¤ÖáµÄÈý´Î·½¸ú¹«×ªÖÜÆÚµÄ¶þ´Î·½µÄ±ÈÖµ¶¼²»ÏàµÈ |
| A£® | ´Óaµ½b | B£® | ´Óbµ½c | ||
| C£® | ´Ócµ½d | D£® | ²»´æÔÚÕâÑùµÄ½×¶Î |