ÌâÄ¿ÄÚÈÝ

8£®Õæ¿ÕÖУ¬Ôڹ⻬¾øÔµË®Æ½ÃæÉϵÄOµã¹Ì¶¨Ò»¸ö´øµçÁ¿Îª+QµÄСÇò£¬Ö±ÏßMNͨ¹ýOµã£¬NΪOMµÄÖе㣬OMµÄ¾àÀëΪd£®ÔÚMµãÓÐÒ»¸ö´øµçÁ¿Îª-q¡¢ÖÊÁ¿ÎªmµÄСÇò£¬ÈçͼËùʾ£¬¾²µçÁ¦³£Á¿Îªk£®
£¨1£©ÇóNµãµÄ³¡Ç¿´óСºÍ·½Ïò£»
£¨2£©ÇóMµãµÄСÇò¸ÕÓɾ²Ö¹ÊÍ·ÅʱµÄ¼ÓËÙ¶È´óСºÍ·½Ïò£»
£¨3£©ÒÑÖªµãµçºÉQËùÐγɵĵ糡Öи÷µãµÄµçÊÆµÄ±í´ïʽΪ¦Õ=k$\frac{Q}{r}$£¬ÆäÖÐrΪ¿Õ¼äijµãµ½µã
µçºÉQµÄ¾àÀ룬ÇóMµãµÄСÇò¸ÕÓɾ²Ö¹ÊͷźóÔ˶¯µ½NµãʱµÄËÙ¶È´óС£®

·ÖÎö £¨1£©ÓɵãµçºÉµÄ³¡Ç¿¹«Ê½½áºÏ³¡Ç¿µþ¼ÓÔ­ÀíÇó³ö³¡Ç¿£®
£¨2£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£®
£¨3£©Óɶ¯Äܶ¨ÀíÇó³öËÙ¶È£®

½â´ð ½â£º£¨1£©¸ù¾Ý³¡Ç¿µþ¼ÓÔ­Àí¿ÉÖª£¬³¡Ç¿´óС£º$E=k\frac{Q}{£¨\frac{d}{2}£©^{2}}+k\frac{q}{£¨\frac{d}{2}£©^{2}}=\frac{4k£¨Q+q£©}{{d}^{2}}$£¬·½ÏòÓÉNÖ¸ÏòM£»
£¨2£©ÊÍ·Åʱ´øµçСÇòÊܵ½µÄ¾²µçÁ¦£º$F=k\frac{Qq}{{d}^{2}}$¡­¢Û
´Ëʱ£¬´øµçСÇòµÄ¼ÓËÙ¶È´óСΪ£º$a=\frac{F}{m}=k\frac{Qq}{{md}^{2}}$£¬Ð¡Çò´ø¸ºµç£¬µç³¡Á¦µÄ·½ÏòÓÉMÖ¸ÏòO£¬Ôò¼ÓËÙ¶È·½ÏòÓÉMÖ¸ÏòO£»
£¨3£©´øµçСÇòÓÉMÔ˶¯µ½N£¬Óɶ¯Äܶ¨ÀíµÃ£º
$-q£¨{¦Õ}_{M}-{¦Õ}_{N}£©=\frac{1}{2}m{v}^{2}$£¬${¦Õ}_{M}=k\frac{Q}{d}$£¬${¦Õ}_{N}=k\frac{Q}{\frac{d}{2}}$£¬
½âµÃ£º$v=\sqrt{\frac{2kQq}{md}}$
´ð£º£¨1£©NµãµÄ³¡Ç¿´óСΪ$\frac{4k£¨Q+q£©}{{d}^{2}}$£¬·½ÏòÓÉNÖ¸ÏòM£»
£¨2£©MµãµÄСÇò¸ÕÓɾ²Ö¹ÊÍ·ÅʱµÄ¼ÓËÙ¶È´óСΪ$k\frac{Qq}{{md}^{2}}$£¬·½ÏòÓÉMÖ¸ÏòO£»
£¨3£©MµãµÄСÇò¸ÕÓɾ²Ö¹ÊͷźóÔ˶¯µ½NµãʱµÄËÙ¶È´óСΪ$\sqrt{\frac{2kQq}{md}}$£®

µãÆÀ ±¾Ì⿼²éÁËÇó³¡Ç¿¡¢¼ÓËÙ¶ÈÓëËÙ¶È£¬·ÖÎöÇå³þÔ˶¯¹ý³Ì¡¢Ó¦ÓõãµçºÉµÄ³¡Ç¿¹«Ê½¡¢Å£¶ÙµÚ¶þ¶¨ÂÉÓ붯Äܶ¨Àí¼´¿ÉÕýÈ·½âÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø