ÌâÄ¿ÄÚÈÝ
8£®£¨1£©ÇóNµãµÄ³¡Ç¿´óСºÍ·½Ïò£»
£¨2£©ÇóMµãµÄСÇò¸ÕÓɾ²Ö¹ÊÍ·ÅʱµÄ¼ÓËÙ¶È´óСºÍ·½Ïò£»
£¨3£©ÒÑÖªµãµçºÉQËùÐγɵĵ糡Öи÷µãµÄµçÊÆµÄ±í´ïʽΪ¦Õ=k$\frac{Q}{r}$£¬ÆäÖÐrΪ¿Õ¼äijµãµ½µã
µçºÉQµÄ¾àÀ룬ÇóMµãµÄСÇò¸ÕÓɾ²Ö¹ÊͷźóÔ˶¯µ½NµãʱµÄËÙ¶È´óС£®
·ÖÎö £¨1£©ÓɵãµçºÉµÄ³¡Ç¿¹«Ê½½áºÏ³¡Ç¿µþ¼ÓÔÀíÇó³ö³¡Ç¿£®
£¨2£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¼ÓËÙ¶È£®
£¨3£©Óɶ¯Äܶ¨ÀíÇó³öËÙ¶È£®
½â´ð ½â£º£¨1£©¸ù¾Ý³¡Ç¿µþ¼ÓÔÀí¿ÉÖª£¬³¡Ç¿´óС£º$E=k\frac{Q}{£¨\frac{d}{2}£©^{2}}+k\frac{q}{£¨\frac{d}{2}£©^{2}}=\frac{4k£¨Q+q£©}{{d}^{2}}$£¬·½ÏòÓÉNÖ¸ÏòM£»
£¨2£©ÊÍ·Åʱ´øµçСÇòÊܵ½µÄ¾²µçÁ¦£º$F=k\frac{Qq}{{d}^{2}}$¡¢Û
´Ëʱ£¬´øµçСÇòµÄ¼ÓËÙ¶È´óСΪ£º$a=\frac{F}{m}=k\frac{Qq}{{md}^{2}}$£¬Ð¡Çò´ø¸ºµç£¬µç³¡Á¦µÄ·½ÏòÓÉMÖ¸ÏòO£¬Ôò¼ÓËÙ¶È·½ÏòÓÉMÖ¸ÏòO£»
£¨3£©´øµçСÇòÓÉMÔ˶¯µ½N£¬Óɶ¯Äܶ¨ÀíµÃ£º
$-q£¨{¦Õ}_{M}-{¦Õ}_{N}£©=\frac{1}{2}m{v}^{2}$£¬${¦Õ}_{M}=k\frac{Q}{d}$£¬${¦Õ}_{N}=k\frac{Q}{\frac{d}{2}}$£¬
½âµÃ£º$v=\sqrt{\frac{2kQq}{md}}$
´ð£º£¨1£©NµãµÄ³¡Ç¿´óСΪ$\frac{4k£¨Q+q£©}{{d}^{2}}$£¬·½ÏòÓÉNÖ¸ÏòM£»
£¨2£©MµãµÄСÇò¸ÕÓɾ²Ö¹ÊÍ·ÅʱµÄ¼ÓËÙ¶È´óСΪ$k\frac{Qq}{{md}^{2}}$£¬·½ÏòÓÉMÖ¸ÏòO£»
£¨3£©MµãµÄСÇò¸ÕÓɾ²Ö¹ÊͷźóÔ˶¯µ½NµãʱµÄËÙ¶È´óСΪ$\sqrt{\frac{2kQq}{md}}$£®
µãÆÀ ±¾Ì⿼²éÁËÇó³¡Ç¿¡¢¼ÓËÙ¶ÈÓëËÙ¶È£¬·ÖÎöÇå³þÔ˶¯¹ý³Ì¡¢Ó¦ÓõãµçºÉµÄ³¡Ç¿¹«Ê½¡¢Å£¶ÙµÚ¶þ¶¨ÂÉÓ붯Äܶ¨Àí¼´¿ÉÕýÈ·½âÌ⣮
| A£® | nvset | B£® | nvet | C£® | It | D£® | $\frac{It}{S}$ |
| A£® | Àã´Î×îÔçͨ¹ýʵÑé·¢ÏÖÁ˵çÁ÷µÄ´ÅЧӦ | |
| B£® | ÃÜÁ¢¸ùͨ¹ýÓ͵ÎʵÑ飬×îÔç²âÁ¿³öÔªµçºÉµÄÊýÖµ | |
| C£® | ·¨ÀµÚ×îÔçÌá³ö³¡µÄ¸ÅÄ²¢Í¨¹ýʵÑé·¢ÏÖÁ˵ç´Å¸ÐÓ¦ÏÖÏó | |
| D£® | °²ÅàÌá³öÁË·Ö×ÓµçÁ÷¼Ù˵£¬ÈÏΪһÇдÅÏÖÏó¶¼ÓеçºÉµÄÔ˶¯ÓÐ¹Ø |
| A£® | ¶¯Äܲ»±ä£¬»úеÄܲ»±ä | B£® | ¶¯Äܲ»±ä£¬»úеÄܼõС | ||
| C£® | ÖØÁ¦ÊÆÄÜÔö¼Ó£¬»úеÄܲ»±ä | D£® | ÖØÁ¦ÊÆÄÜÔö¼Ó£¬»úеÄÜÔö¼Ó |
| A£® | $\frac{F}{8}$ | B£® | $\frac{3F}{8}$ | C£® | $\frac{F}{4}$ | D£® | $\frac{3F}{16}$ |
| A£® | ÖʵãÔÚ1 sÄ©ËÙ¶ÈΪ1.5m/s | |
| B£® | ÖʵãÔÚµÚ1 sÄ򵀮½¾ùËÙ¶È0.75m/s | |
| C£® | Öʵã×öÔÈËÙÖ±ÏßÔ˶¯£¬ËÙ¶ÈΪ0.5 m/s | |
| D£® | Öʵã×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¼ÓËÙ¶ÈΪ0.5 m/s2 |