ÌâÄ¿ÄÚÈÝ
9£®| A£® | Ô˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀëΪ$\frac{d{v}_{2}}{{v}_{1}}$ | |
| B£® | Ô˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀëΪ$\frac{d\sqrt{{{v}_{1}}^{2}+{{v}_{2}}^{2}}}{{v}_{2}}$ | |
| C£® | ¼ýÉäµ½¹Ì¶¨Ä¿±êµÄ×î¶Ìʱ¼äΪ$\frac{d}{{v}^{2}}$ | |
| D£® | ¼ýÉäµ½¹Ì¶¨Ä¿±êµÄ×î¶Ìʱ¼äΪ$\frac{d}{\sqrt{{{v}_{2}}^{2}-{{v}_{1}}^{2}}}$ |
·ÖÎö Ô˶¯Ô±·Å³öµÄ¼ý¼È²ÎÓëÁËÑØÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯£¬ÓÖ²ÎÓëÁË´¹Ö±ÓÚÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯£¬µ±·Å³öµÄ¼ý´¹Ö±ÓÚÂíÔËÐз½Ïò·¢É䣬´ËʱÔËÐÐʱ¼ä×î¶Ì£¬¸ù¾Ýt=$\frac{d}{{v}_{2}}$Çó³ö×î¶Ìʱ¼ä£¬¸ù¾Ý·ÖÔ˶¯ºÍºÏÔ˶¯¾ßÓеÈʱÐÔ£¬Çó³ö¼ýÔÚÂíÔËÐз½ÏòÉϵľàÀ룬¸ù¾ÝÔ˶¯µÄºÏ³É£¬Çó³öÔ˶¯Ô±·Å¼ý´¦ÀëÄ¿±êµÄ¾àÀ룮
½â´ð ½â£ºC¡¢µ±·Å³öµÄ¼ý´¹Ö±ÓÚÂíÔËÐз½Ïò·¢É䣬´ËʱÔËÐÐʱ¼ä×î¶Ì£¬ËùÒÔ×î¶Ìʱ¼ät=$\frac{d}{{v}_{2}}$£®¹ÊCÕýÈ·£¬D´íÎó£®
A¡¢×î¶Ìʱ¼äΪt=$\frac{d}{{v}_{2}}$£¬Ôò¼ýÔÚÑØÂíÔËÐз½ÏòÉϵÄÎ»ÒÆÎªx=v1t=$\frac{{v}_{1}d}{{v}_{2}}$£¬ËùÒԷżý´¦¾àÀëÄ¿±êµÄ¾àÀëΪs=$\sqrt{{d}^{2}+{x}^{2}}=\frac{d\sqrt{{{v}_{1}}^{2}+{{v}_{2}}^{2}}}{{v}_{2}}$£®¹ÊA´íÎó£¬BÕýÈ·£®
¹ÊÑ¡£ºBC£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀ¼ý²ÎÓëÁËÑØÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯ºÍ´¹Ö±ÓÚÂíÔËÐз½ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯£¬ÖªµÀ·ÖÔ˶¯ÓëºÏÔ˶¯¾ßÓеÈʱÐÔ£®
| A£® | ÎïÌåµÄÄ©ËÙ¶ÈÒ»¶¨µÈÓÚ³õËٶȵÄ2±¶ | |
| B£® | ÎïÌåµÄÄ©ËÙ¶ÈÒ»¶¨±È³õËÙ¶È´ó2m/s | |
| C£® | ÎïÌåÕâÒ»ÃëµÄ³õËÙ¶ÈÒ»¶¨±ÈǰһÃëµÄÄ©ËÙ¶È´ó2m/s | |
| D£® | ÎïÌåÕâÒ»ÃëµÄÄ©ËÙ¶ÈÒ»¶¨±ÈǰһÃëµÄ³õËÙ¶È´ó4m/s |
| A£® | ÏòÉÏÆ«×ª | B£® | ÏòÏÂÆ«×ª | C£® | Ïò¶«Æ«×ª | D£® | ÏòÎ÷ƫת |
| A£® | ´ÓAµ½BÒ»Ö±Ôö´ó | B£® | ´ÓAµ½BÒ»Ö±¼õС | ||
| C£® | ´ÓAµ½BÏȼõСºóÔö´ó | D£® | ´ÓAµ½BÏÈÔö´óºó¼õС |
| A£® | ¦È=90¡ã | |
| B£® | ¦È=45¡ã | |
| C£® | ÈôÖ»½«Ï¸¸ËˮƽÏò×óÒÆ¶¯ÉÙÐí£¬Ôòµ±b°Ú¹ýµÄ½Ç¶ÈСÓÚ90¶Èʱ£¬aÇò¶ÔµØÃæµÄѹÁ¦¸ÕºÃΪÁã | |
| D£® | bÇò°Ú¶¯µ½×îµÍµãµÄ¹ý³ÌÖУ¬ÖØÁ¦¶ÔСÇò×ö¹¦µÄ˲ʱ¹¦ÂÊÒ»Ö±Ôö´ó |
| A£® | Aµã´¦µÄ³¡Ç¿´óÓÚBµã´¦µÄ³¡Ç¿ | |
| B£® | Aµã´¦µÄ³¡Ç¿Ð¡ÓÚBµã´¦µÄ³¡Ç¿ | |
| C£® | ´øÕýµçµÄÊÔ̽µçºÉÔÚBµãËùÊܵĵ糡Á¦µÄ·½ÏòÏò×ó | |
| D£® | ÊÔ̽µçºÉÔÚBµãµÄ¼ÓËÙ¶È´óÓÚAµãµÄ¼ÓËÙ¶È |