ÌâÄ¿ÄÚÈÝ
£¨1£©ÎïÌåB¸ÕÀ뿪µØÃæÊ±£¬ÎïÌåCÏÂÂäµÄ¸ß¶Èh£»
£¨2£©ÎïÌåCµÄÖÊÁ¿M£»
£¨3£©ÎïÌåA»ñµÃµÄ×î´óËÙ¶Èvm£®
·ÖÎö£º£¨1£©ÎïÌåCϽµµÄ¸ß¶ÈµÈÓÚÎïÌåAϽµµÄ¸ß¶È£»¿ªÊ¼Ê±µ¯»ÉѹËõ£¬ºóÀ´µ¯»ÉÀ³¤£¬ÎïÌåCÏÂÂäµÄ¸ß¶ÈhµÈÓÚµ¯»É³¤¶ÈµÄÔö¼ÓÁ¿£»
£¨2£©ÎïÌåB¸ÕÀ뿪µØÃæÊ±£¬ÎïÌåAÇ¡ºÃ»ñµÃ×î´óËÙ¶È£¬ËµÃ÷ÎïÌåAÊÜÁ¦Æ½ºâ£¬¸ù¾ÝƽºâÌõ¼þÁÐʽÇó½â£»
£¨3£©ÎïÌåA¡¢B¡¢CÒÔ¼°µ¯»Éϵͳ»úеÄÜÊØºã£¬¸ù¾ÝÊØºã¶¨ÂÉÁÐʽÇó½â¼´¿É£®
£¨2£©ÎïÌåB¸ÕÀ뿪µØÃæÊ±£¬ÎïÌåAÇ¡ºÃ»ñµÃ×î´óËÙ¶È£¬ËµÃ÷ÎïÌåAÊÜÁ¦Æ½ºâ£¬¸ù¾ÝƽºâÌõ¼þÁÐʽÇó½â£»
£¨3£©ÎïÌåA¡¢B¡¢CÒÔ¼°µ¯»Éϵͳ»úеÄÜÊØºã£¬¸ù¾ÝÊØºã¶¨ÂÉÁÐʽÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©¿ªÊ¼Ê±£¬A¡¢B¾²Ö¹£¬É赯»ÉѹËõÁ¿Îªx1£¬
¶ÔAÓУº?kx1=mg
¹ÒC²¢Êͷźó£¬CÏòÏÂÔ˶¯£¬AÏòÉÏÔ˶¯£¬ÉèB¸ÕÒªÀëµØÊ±µ¯»ÉÉ쳤Á¿Îªx2£¬
¶ÔBÓУº?kx2=mg
CÏÂÂäµÄ¸ß¶ÈhµÈÓÚAÉÏÉýµÄ¸ß¶È£¬h=x1+x2=
£¨2£©ÉèÉþµÄÀÁ¦ÎªT£¬µ¯»ÉÉ쳤Á¿Îªx£¬ÎïÌåAµÄ¼ÓËÙ¶ÈΪa£¬ÎïÌåCµÄ¼ÓËÙ¶ÈÓëAµÄ¼ÓËÙ¶È´óСÏàµÈ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ
¶ÔAÓУºT-mg-kx=ma
¶ÔCÓУºMg-T¡ä=Ma
T=T¡ä
B¸ÕÒªÀëµØÊ±£¬A»ñµÃ×î´óËÙ¶È£¬ÓУºkx=kx2=mg£¬a=0
ÁªÁ¢½âµÃ£ºM=2m
£¨3£©ÓÉÓÚx1=x2£¬µ¯»É´¦ÓÚѹËõºÍÉ쳤״̬ʱµ¯ÐÔÊÆÄÜÏàͬ£¬ÇÒB¸ÕÀ뿪µØÃæÊ±£¬A¡¢CÁ½ÎïÌåµÄËÙ¶È´óСÏàͬ£®
A¡¢C¼°µ¯»É×é³ÉµÄϵͳ»úеÄÜÊØºã£¬ÓУºMgh-mgh=
(M+m)
ÁªÁ¢½âµÃvm=
´ð£º£¨1£©ÎïÌåB¸ÕÀ뿪µØÃæÊ±£¬ÎïÌåCÏÂÂäµÄ¸ß¶ÈhΪ
£»
£¨2£©ÎïÌåCµÄÖÊÁ¿MΪ2m£»
£¨3£©ÎïÌåA»ñµÃµÄ×î´óËÙ¶ÈΪ
£®
¶ÔAÓУº?kx1=mg
¹ÒC²¢Êͷźó£¬CÏòÏÂÔ˶¯£¬AÏòÉÏÔ˶¯£¬ÉèB¸ÕÒªÀëµØÊ±µ¯»ÉÉ쳤Á¿Îªx2£¬
¶ÔBÓУº?kx2=mg
CÏÂÂäµÄ¸ß¶ÈhµÈÓÚAÉÏÉýµÄ¸ß¶È£¬h=x1+x2=
| 2mg |
| k |
£¨2£©ÉèÉþµÄÀÁ¦ÎªT£¬µ¯»ÉÉ쳤Á¿Îªx£¬ÎïÌåAµÄ¼ÓËÙ¶ÈΪa£¬ÎïÌåCµÄ¼ÓËÙ¶ÈÓëAµÄ¼ÓËÙ¶È´óСÏàµÈ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ
¶ÔAÓУºT-mg-kx=ma
¶ÔCÓУºMg-T¡ä=Ma
T=T¡ä
B¸ÕÒªÀëµØÊ±£¬A»ñµÃ×î´óËÙ¶È£¬ÓУºkx=kx2=mg£¬a=0
ÁªÁ¢½âµÃ£ºM=2m
£¨3£©ÓÉÓÚx1=x2£¬µ¯»É´¦ÓÚѹËõºÍÉ쳤״̬ʱµ¯ÐÔÊÆÄÜÏàͬ£¬ÇÒB¸ÕÀ뿪µØÃæÊ±£¬A¡¢CÁ½ÎïÌåµÄËÙ¶È´óСÏàͬ£®
A¡¢C¼°µ¯»É×é³ÉµÄϵͳ»úеÄÜÊØºã£¬ÓУºMgh-mgh=
| 1 |
| 2 |
| v | 2 m |
ÁªÁ¢½âµÃvm=
|
´ð£º£¨1£©ÎïÌåB¸ÕÀ뿪µØÃæÊ±£¬ÎïÌåCÏÂÂäµÄ¸ß¶ÈhΪ
| 2mg |
| k |
£¨2£©ÎïÌåCµÄÖÊÁ¿MΪ2m£»
£¨3£©ÎïÌåA»ñµÃµÄ×î´óËÙ¶ÈΪ
|
µãÆÀ£º±¾Ìâ¹Ø¼ü·ÖÎöÇå³þÎïÌåµÄÔ˶¯¹æÂÉ£¬È»ºó¸ù¾ÝƽºâÌõ¼þºÍ»úеÄÜÊØºã¶¨ÂÉÒÔ¼°ºú¿Ë¶¨ÂÉÁÐʽºóÁªÁ¢Çó½â¼´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿