题目内容
如图5-2-7,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静放有一小球C,A、B、C的质量均为m.现给小球一水平向右的瞬时速度v,小球会在环内侧做圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起(不计小球与环的摩擦阻力),瞬时速度必须满足( )
A.最小值
B.最大值![]()
C.最小值
D.最大值![]()
![]()
图5-2-7
解析 要保证小球能通过环的最高点,在最高点最小速度满足mg=m
,由最低点到最高点由机械能守恒得,
mv
=mg·2r+
mv
,可得小球在最低点瞬时速度的最小值为
;为了不会使环在竖直方向上跳起,在最高点的最大速度时对环的压力为2mg,满足3mg=m
,从最低点到最高点由机械能守恒得:
mv
=mg·2r+
mv
,可得
小球在最低点瞬时速度的最大值为
.
练习册系列答案
相关题目