题目内容
1.| A. | F1=4F2 | B. | F1=3F2 | C. | 2F1=3F2 | D. | 2F1=5F2 |
分析 运用整体法研究OA绳与竖直方向的夹角;再隔离B研究,分析AB绳与竖直方向的夹角;由几何关系得到两夹角相等,判断两个拉力的关系.
解答
解:A受到F1水平向右的力,B受到F2的水平向左的力,以整体为研究对象,分析受力如图:
设OA绳与竖直方向的夹角为α,则由平衡条件得:
tanα=$\frac{{F}_{1}-{F}_{2}}{2mg+mg}$…①
以B球为研究对象,受力如图.设AB绳与竖直方向的夹角为β,则由平衡条件得:
tanβ=$\frac{{F}_{2}}{2mg}$…②
由几何关系得到:
α=β…③
联立①②③解得:2F1=5F2
故选:D
点评 本题考查共点力作用下物体的平衡问题,采用隔离法和整体法,由平衡条件分析物体的状态,考查灵活选择研究对象的能力.
练习册系列答案
相关题目
12.关于功率,以下说法中正确的是( )
| A. | 根据P=$\frac{W}{t}$可知,机器做功越多,其功率就越大 | |
| B. | 根据P=Fv可知,当发动机的功率保持不变的时候,汽车速度的大小与牵引力成反比 | |
| C. | 根据P=$\frac{W}{t}$可知,只要知道时间t内机器所做的功,就可以求得这段时间内任一时刻机器做功的功率 | |
| D. | 功率大表示做功快,也就是在单位时间内做的功多 |
9.下列观点与原子核式结构理论保持一致的是( )
| A. | 原子的正电荷均匀分布在整个原子中 | |
| B. | 带负电的电子在核外绕着核在同一轨道上旋转 | |
| C. | 原子的几乎全部正电荷和全部质量都集中在原子核里 | |
| D. | 原子的中心有原子核且带正电 |
16.
如图所示,轻质且不可伸长的细绳一端系一质量为m的小球,另一端固定在天花板上的O点.则小球在竖直平面内摆动的过程中,以下说法正确的是( )
| A. | 小球在摆动过程中受到的外力的合力即为向心力 | |
| B. | 在最高点A、B,因小球的速度为0,所以小球受到的合力为0 | |
| C. | 小球在最低点C所受的合力,即为向心力 | |
| D. | 小球在摆动过程中是绳子的拉力使其速率发生变化 |
6.2013年12月14日晚上9点14左右,嫦娥三号月球探测器平衡降落在月球虹湾,并在4分钟后展开太阳能电池板,如图甲.太阳能电池在有光照时,可以将光能转化为电能;没有光照时,可以视为一个电动势为零的电学器件.

探究一:某实验小组用测绘小灯泡伏安特性曲线的实验方法,探究太阳能电池被不透光黑纸包住时的I-U特性
(1)根据实验原理图乙,图丙中滑动变阻器上需要用导线连接的是A、D、E或C、D、E.(用A、B、C、D、E表示)
(2)通过实验获得如下数据:
请在图丁坐标纸上画出太阳能电池的I-U特性曲线.
探究二:在稳定光照环境下,取下太阳能电池外的黑纸,并按图戊电路探究导体电阻与其影响因素的定量关系
(3)该小组通过本实验练习使用螺旋测微器,其次测量如图己所示,读数为0.840mm.
(4)开关闭合后,下列说法正确的是B.
A.电压表分流使R测偏大 B.电压表分流使R测偏小 C.电流表分压使R测偏大 D.电流表分压使R测偏小
(5)若实验中电压表和电流表的示数分别为U和I,金属丝的直径为d,长度为L,则金属丝的电阻率ρ=$\frac{πU{d}^{2}}{4IL}$.
探究一:某实验小组用测绘小灯泡伏安特性曲线的实验方法,探究太阳能电池被不透光黑纸包住时的I-U特性
(1)根据实验原理图乙,图丙中滑动变阻器上需要用导线连接的是A、D、E或C、D、E.(用A、B、C、D、E表示)
(2)通过实验获得如下数据:
| U/V | 0 | 0.70 | 1.20 | 1.51 | 1.92 | 2.16 | 2.47 |
| I/μA | 0 | 20.5 | 56.1 | 97.6 | 199.9 | 303.3 | 541.3 |
探究二:在稳定光照环境下,取下太阳能电池外的黑纸,并按图戊电路探究导体电阻与其影响因素的定量关系
(3)该小组通过本实验练习使用螺旋测微器,其次测量如图己所示,读数为0.840mm.
(4)开关闭合后,下列说法正确的是B.
A.电压表分流使R测偏大 B.电压表分流使R测偏小 C.电流表分压使R测偏大 D.电流表分压使R测偏小
(5)若实验中电压表和电流表的示数分别为U和I,金属丝的直径为d,长度为L,则金属丝的电阻率ρ=$\frac{πU{d}^{2}}{4IL}$.
13.卢瑟福预想到原子核内除质子外,还有中子的事实依据是( )
| A. | 电子数与质子数相等 | |
| B. | 原子核的质量大约是质子质量的整数倍 | |
| C. | 原子核的核电荷数只是质量数的一半或少一些 | |
| D. | 质子和中子的质量几乎相等 |
11.为测量木块与木板间的动摩擦因数,将木板倾斜,木块以不同的初速度沿木板向上滑到最高点后再返回,用光电门测量木块来回的速度,用刻度尺测量从光电门向上运动的最大距离.为确定木块向上运动的最大高度,让木块推动轻质卡到最高点,记录这个位置,实验装置如图1所示.
(1)本实验中,下列操作合理的是ACD.
A.遮光条的宽度应尽量小些
B.实验前将轻质卡置于光电门附近
C.为了实验成功,木板的倾角必须大于某一值
D.光电门与轻质卡所能达到的最高点间的距离即为木块向上运动的最大距离
(2)用螺旋测微器测量遮光条的宽度,如图2所示读数为3.700mm.

(3)改变木块的初速度,测量出它向上运动的最大距离与木块来回经过光电门时速度的平方差,结果如表所示,试在图3中坐标纸上作出△v2-x的图象.经测量木板倾角的余弦值为0.6,重力加速度取g=9.80m/s2,则木块与木板间的动摩擦因数为0.010(结果保留两位有效数字).
(1)本实验中,下列操作合理的是ACD.
A.遮光条的宽度应尽量小些
B.实验前将轻质卡置于光电门附近
C.为了实验成功,木板的倾角必须大于某一值
D.光电门与轻质卡所能达到的最高点间的距离即为木块向上运动的最大距离
(2)用螺旋测微器测量遮光条的宽度,如图2所示读数为3.700mm.
(3)改变木块的初速度,测量出它向上运动的最大距离与木块来回经过光电门时速度的平方差,结果如表所示,试在图3中坐标纸上作出△v2-x的图象.经测量木板倾角的余弦值为0.6,重力加速度取g=9.80m/s2,则木块与木板间的动摩擦因数为0.010(结果保留两位有效数字).
| 序号 | 1 | 2 | 3 | 4 | 5 |
| x/m | 16.0 | 36.0 | 60.0 | 70.0 | 88.0 |
| △v2/(m2•s-2) | 0.04 | 0.09 | 0.15 | 0.19 | 0.22 |