ÌâÄ¿ÄÚÈÝ
7£®£¨1£©ÈôËù¼Ó´Å³¡µÄºá½ØÃæÎªÔ²ÐΣ¬Æä×îÐ¡Ãæ»ýΪ¶àÉÙ£¨q¡¢m¡¢v¡¢B¾ùΪÒÑÖª£©£¬´Å³¡·½ÏòÏòÀﻹÊÇÏòÍ⣿
£¨2£©ÈôMNµÄ³¤¶ÈL=1.5m£¬´øµçÖù×ÓµÄÖÊÁ¿Îªm=4.0¡Á10-8kg¡¢µçÁ¿Îªq=+4.0¡Á10-3C¡¢ËÙ¶ÈΪv=5.0¡Á104m/s£¬Ëù¼Ó´Å³¡µÄ´Å¸ÐӦǿ¶ÈΪB=1.0T£¬Ëù¼ÓÓнç´Å³¡µÄºá½ØÃæÈÔΪԲÐΣ¬´øµçÁ£×ÓÄÜÑØQN·½Ïòµ½´ïNµã£¬Ôò´øµçÁ£×ÓÓÉMµãµ½NµãµÄʱ¼äΪ¶àÉÙ£¿£¨¼ÆËã½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
·ÖÎö £¨1£©ÉèÀ뿪´Å³¡µÄµãΪSµã£¬µ±´Å³¡ÇøÓòÒÔPSΪֱ¾¶Ê±£¬¸ÃÇøÓòÃæ»ýÊÇ×îСµÄ£»¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â¹ìµÀ°ë¾¶£¬½áºÏ¼¸ºÎ¹ØÏµµÃµ½´Å³¡ÇøÓòÔ²µÄ°ë¾¶£»
£¨2£©Ôڴų¡ÇøÓòÍâÊÇÔÈËÙÖ±ÏßÔ˶¯£¬Ôڴų¡ÄÚÊÇÔÈËÙÔ²ÖÜÔ˶¯£¬½áºÏ¼¸ºÎ¹ØÏµµÃµ½¸÷¸ö¹ì¼£µÄ³¤¶È¼´¿ÉµÃµ½×Üʱ¼ä£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÓÉPµã½øÈëÓнçÔ²Ðδų¡ÇøÓò£¬Sµã³ö´Å³¡ÇøÓò£¬ÈçͼËùʾ£®![]()
µ±PSΪËù¼ÓÔ²Ðδų¡ÇøÓòµÄÖ±¾¶Ê±£¬Ô²Ðδų¡ÇøÓòµÄÃæ»ý×îС£¬O1Ϊ´øµçÁ£×ÓÔÚÓнç´Å³¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÔ²ÐÄ¡¢r1ΪÆä°ë¾¶£¬µãO2ΪËùÊ©¼ÓÔ²ÐÎÓнç´Å³¡µÄÔ²ÐÄ£¬r2ΪÆä°ë¾¶£®
ÓÉqvB=m$\frac{{v}^{2}}{{r}_{1}}$£¬µÃ£º
r1=$\frac{mv}{qB}$
ÔÚÈý½ÇÐÎO1PQÖУ¬¡ÏO1QP=$\frac{¦Ð}{6}$£¬ÓÖO1Q¡ÍPS
ËùÒÔ¡ÏO1PO2=$\frac{¦Ð}{6}$
ËùÒÔr2=r1cos$\frac{¦Ð}{6}$=$\frac{\sqrt{3}mv}{2qB}$
ËùÒÔ×îÐ¡ÇøÓò´Å³¡Ãæ»ý£ºS=¦Ð${r}_{2}^{2}$=$\frac{3¦Ð{m}^{2}{v}^{2}}{4{q}^{2}{B}^{2}}$
´Å³¡µÄ·½Ïò´¹Ö±Ö½ÃæÏòÍ⣮
£¨2£©°Ñm=4.0¡Á10-8kg¡¢q=+4.0¡Á10-3C¡¢v=5.0¡Á104m/s£¬B=1.0T´úÈër1=$\frac{mv}{qB}$£¬
µÃ´øµçÁ£×Ó×öÔ²ÖÜÔ˶¯µÄ°ë¾¶r1=$\frac{4.0¡Á1{0}^{-8}¡Á5.0¡Á1{0}^{4}}{4.0¡Á1{0}^{-3}¡Á1.0}$m=0.5m
ÒòΪMN=3r1£¬ËùÒÔʹ´øµçÁ£×ÓÄÜÑØQN·½Ïòµ½´ïNµã£¬±ØÐëÔÚMµã½øÈë´Å³¡£¬Sµã³ö´Å³¡£¬ÈçͼËùʾ£®![]()
Ëù¼ÓÓнç´Å³¡ÇøÓòµÄ°ë¾¶ÎªMO2£¬´øµçÁ£×ÓÔ²ÖÜÔ˶¯µÄ°ë¾¶ÎªMO1£®Óм¸ºÎ¹ØÏµ¡ÏMO1S=$\frac{2¦Ð}{3}$£®
T=$\frac{2¦Ðm}{qB}$=$\frac{2¡Á3.14¡Á4¡Á1{0}^{-8}}{4¡Á1{0}^{-3}¡Á1}$=6.3¡Á10-5s
´øµçÁ£×ÓÔڴų¡Ô˶¯µÄʱ¼äΪ$\frac{1}{3}$¸öÖÜÆÚ£¬ËùÒÔ
t1=$\frac{1}{3}$T¨T2.1¡Á10-5s
³ö´Å³¡ºó£¬O1N=L-MO1=1.5-0.5=1.0m£¬ÔÚÖ±½ÇÈý½ÇÐÎO1SNÖУ¬ÒòΪ¡ÏO1NS=$\frac{¦Ð}{6}$£¬
ËùÒÔSN=O1Ncos$\frac{¦Ð}{6}$=1.0¡Á$\frac{\sqrt{3}}{2}$m=$\frac{\sqrt{3}}{2}$m£®
ËùÒÔt2=$\frac{SN}{v}$=$\frac{\frac{\sqrt{3}}{2}}{5¡Á1{0}^{4}}$s=1.7¡Á10-5s
ËùÒÔ×Üʱ¼ä£º
t=t1+t2=2.1¡Á10-5+1.7¡Á10-5=3.8¡Á10-5s
´ð£º£¨1£©ÈôËù¼Ó´Å³¡µÄºá½ØÃæÎªÔ²ÐΣ¬Æä×îÐ¡Ãæ»ýΪ£¬´Å³¡·½ÏòÏòÍ⣻
£¨2£©´øµçÁ£×ÓÓÉMµãµ½NµãµÄʱ¼äΪ3.8¡Á10-5s£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á£×ÓµÄÔ˶¯Çé¿ö£¬»³öÁÙ½ç¹ì¼££¬È»ºó½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â£¬²»ÄÑ£®
| A£® | ×èÁ¦¡¢Ñ¹Á¦¡¢¶¯Á¦ | B£® | ÖØÁ¦¡¢µ¯Á¦¡¢Ä¦²ÁÁ¦ | ||
| C£® | µ¯Á¦¡¢Ö§³ÖÁ¦¡¢ÀÁ¦ | D£® | ¸¡Á¦¡¢ÖØÁ¦¡¢ÊÖ¶ÔСÇòµÄÎÕÁ¦ |
| A£® | S±ÕºÏ£¬Ö»ÏòÓÒÒÆ¶¯»¬Æ¬P£¬PÔ½¿¿½üb¶Ë£¬µç×Ó´òÔÚMÉϵÄλÖÃÔ½¸ß | |
| B£® | S±ÕºÏ£¬Ö»¸Ä±äA¡¢B°å¼äµÄ¾àÀ룬¸Ä±äǰºó£¬µç×ÓÓÉOÖÁM¾ÀúµÄʱ¼äÏàͬ | |
| C£® | S±ÕºÏ£¬Ö»¸Ä±äA¡¢B°å¼äµÄ¾àÀ룬¸Ä±äǰºó£¬µç×Óµ½´ïMǰ˲¼äµÄ¶¯ÄÜÏàͬ | |
| D£® | S±ÕºÏºóÔÙ¶Ï¿ª£¬Ö»Ïò×óÆ½ÒÆB£¬BÔ½¿¿½üA°å£¬µç×Ó´òÔÚMÉϵÄλÖÃÔ½µÍ |
| A£® | tA£¼tC£¼tB | |
| B£® | tA=tC£¼tB | |
| C£® | tA=tC=tB | |
| D£® | ÓÉÓÚCµãµÄλÖò»È·¶¨£¬ÎÞ·¨±È½Ïʱ¼ä´óС¹ØÏµ |
| A£® | £¨$\frac{3}{2}$£©${\;}^{\frac{1}{2}}$ | B£® | £¨$\frac{3}{2}$£©${\;}^{\frac{2}{3}}$ | C£® | £¨$\frac{3}{2}$£©${\;}^{\frac{3}{2}}$ | D£® | £¨$\frac{3}{2}$£©2 |