ÌâÄ¿ÄÚÈÝ
5£®| A£® | Îï¿éC¶ÔAµÄ×÷ÓÃÁ¦´óСΪmg | |
| B£® | СÇòBµÄ¼ÓËÙ¶È·½ÏòÏò×󣬴óСΪ$\frac{g}{tan¦È}$ | |
| C£® | µØÃæ¶ÔAµÄÖ§³ÖÁ¦´óСΪ£¨M+m£©g | |
| D£® | µØÃæÓëAÖ®¼äµÄ»¬¶¯Ä¦²ÁÒòÊýΪtan¦È |
·ÖÎö ·ÖÎöÎï¿éCÓëBµÄÊÜÁ¦Çé¿ö£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóA¶ÔCµÄ×÷ÓÃÁ¦´óС£¬ÔÙÇóÎï¿éC¶ÔAµÄ×÷ÓÃÁ¦´óС£®ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóСÇòBµÄ¼ÓËÙ¶È£®ÒÔA¡¢B¡¢CÕûÌåΪÑо¿¶ÔÏó£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµØÃæ¶ÔAµÄÖ§³ÖÁ¦´óСºÍµØÃæÓëAÖ®¼äµÄ»¬¶¯Ä¦²ÁÒòÊý£®
½â´ð
½â£ºAB¡¢ÒÔBΪÑо¿¶ÔÏ󣬷ÖÎöÊÜÁ¦Èçͼ£¬BµÄºÏÁ¦Ë®Æ½Ïò×ó£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ֪СÇòBµÄ¼ÓËÙ¶È·½ÏòÏò×ó£¬ÓÐ mgtan¦È=ma£¬µÃ a=gtan¦È£®
Îï¿éAÓëСÇòBµÄÖÊÁ¿ÏàµÈ£¬¼ÓËÙ¶ÈÏàͬ£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÖªºÏÁ¦Ïàͬ£¬ÓÉÆ½ÐÐËıßÐζ¨Ôò¿ÉÖª£¬A¶ÔCµÄ×÷ÓÃÁ¦ÓëСÇòBËùÊܵÄÖ§³ÖÁ¦N´óСÏàµÈ£¬Îª $\frac{mg}{cos¦È}$£¬ÓÉÅ£¶ÙµÚÈý¶¨ÂÉÖªÎï¿éC¶ÔAµÄ×÷ÓÃÁ¦´óСҲΪ$\frac{mg}{cos¦È}$£®¹ÊAB´íÎó£®
CD¡¢A¡¢B¡¢CµÄ¼ÓËÙ¶ÈÏàͬ£¬ÔòÒÔA¡¢B¡¢CÕûÌåΪÑо¿¶ÔÏó£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
ÊúÖ±·½ÏòÓУºµØÃæ¶ÔAµÄÖ§³ÖÁ¦´óС FN=£¨M+2m£©g
ˮƽ·½ÏòÓУºf=£¨M+2m£©a
ÓÖ f=¦ÌFN£®
ÁªÁ¢½âµÃ£ºµØÃæÓëAÖ®¼äµÄ»¬¶¯Ä¦²ÁÒòÊý ¦Ì=tan¦È£®¹ÊC´íÎó£¬DÕýÈ·£®
¹ÊÑ¡£ºD
µãÆÀ ±¾Ìâ¹Ø¼üÔÚÓÚÑо¿¶ÔÏóµÄÑ¡Ôñ£¬Òª×¥×¡Îï¿éÓëСÇòÏà¶ÔÓÚA¾²Ö¹£¬ÈýÕß¼ÓËÙ¶ÈÏàͬµÄÌØµã£¬ÔËÓúϳɷ¨Ñо¿CÓëBµÄÊÜÁ¦Çé¿ö£®
| A£® | $\frac{¦ÐrR}{a}$ | B£® | $\frac{¦Ðra}{R}$ | C£® | $\frac{¦ÐRa}{r}$ | D£® | $\frac{¦ÐR}{ar}$ |
| A£® | µçÁ÷ | B£® | µçѹ | C£® | µçÈÝ | D£® | µç³¡Ç¿¶È |
| A£® | m¿ÉÄÜÊÇÏòÏÂ×ö¼ÓËÙÔ˶¯ | |
| B£® | µØÃæ¶ÔľШµÄÖ§³ÖÁ¦Ò»¶¨´óÓÚ£¨M+m£©g | |
| C£® | µØÃæ¶ÔľШµÄĦ²ÁÁ¦Ò»¶¨Ë®Æ½ÏòÓÒ | |
| D£® | m¶ÔľШ×÷ÓÃÁ¦µÄˮƽ·ÖÁ¿Ð¡ÓÚµØÃæ¶ÔľШµÄĦ²ÁÁ¦ |
| A£® | ×îÖÕ¼×±ÈÒÒÏÈÂ䵨 | |
| B£® | δÂäµØÇ°£¬¼×¼ÓËÙ¶ÈÊÇÒÒ¼ÓËٶȵÄ5±¶ | |
| C£® | δÂäµØÇ°£¬ÔÚͬһʱ¿Ì¼×µÄËٶȱÈÒÒµÄËÙ¶È´ó | |
| D£® | δÂäµØÇ°£¬ÏÂÂä1mʱ£¬ËüÃǵÄËÙ¶ÈÏàͬ |
| A£® | $\sqrt{2}$M | B£® | $\sqrt{3}$M | C£® | $\frac{\sqrt{2}}{2}$M | D£® | $\frac{\sqrt{3}}{2}$M |
| A£® | $\frac{2}{3}$m/s2 | B£® | $\frac{4}{3}$m/s2 | C£® | $\frac{8}{9}$m/s2 | D£® | $\frac{16}{9}$m/s2 |