ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬OAÓëOCAΪÖÃÓÚË®Æ½ÃæÄڵĹ⻬½ðÊôµ¼¹ì£¬OCAµ¼¹ìÂú×ãÇúÏß·½³Ìy=1.0sin£¨
x£©m£¬cΪÇúÏßµÄ×î¸ßµã£¬OAµ¼¹ìÓëOCAµ¼¹ì·Ö±ðÔÚOµãºÍAµã½ÓÓÐ×èÖµR1=3.0¦¸ºÍR2=6.0¦¸Ìå»ý¿ÉºöÂԵֵ͍µç×裮ÔÚxOyÆ½ÃæÄÚ´æÔÚB=0.2TµÄÔÈÇ¿´Å³¡£¬·½ÏòÈçͼ£®ÏÖÓÐÒ»³¤1.5mµÄ½ðÊô°ôÔÚˮƽÍâÁ¦F×÷ÓÃÏÂÒÔËÙ¶Èv=5.0m/sˮƽÏòÓÒÔÈËÙÔ˶¯£¬Éè°ôÓëÁ½µ¼¹ìʼÖÕ½Ó´¥Á¼ºÃ£¬ÆäÓàµç×è²»¼Æ£¬Çó£º
£¨1£©½ðÊô°ôÔÚµ¼¹ìÉÏÔ˶¯Ê±R1µÄ×î´ó¹¦ÂÊ£»
£¨2£©ÍâÁ¦FµÄ×î´óÖµ£»
£¨3£©½ðÊô°ô»¬¹ýµ¼¹ìOAµÄ¹ý³Ì£¬ÍâÁ¦Ëù×öµÄ¹¦£®
| ¦Ð |
| 3 |
£¨1£©½ðÊô°ôÔÚµ¼¹ìÉÏÔ˶¯Ê±R1µÄ×î´ó¹¦ÂÊ£»
£¨2£©ÍâÁ¦FµÄ×î´óÖµ£»
£¨3£©½ðÊô°ô»¬¹ýµ¼¹ìOAµÄ¹ý³Ì£¬ÍâÁ¦Ëù×öµÄ¹¦£®
£¨1£©½ðÊô°ô»¬ÖÁC´¦£¬ÓÐЧÇи¶È×î´ó£¬½ðÊô°ôÉϸÐÓ¦µç¶¯ÊÆ×î´ó£¬R1ºÍR2ÉÏÏûºÄµÄµç¹¦ÂÊ×î´ó
¡ày=1.0sin£¨
x£©m£¬Áîy=0£¬ÓÐOA³¤¶ÈΪxA=3m
½ðÊô°ô»¬ÖÁCµãʱ
xC=
=1.5m
¹ÊyC=1.0sin
¡Á1.5=1.0m
µç·×ܵç×èR×Ü=
=2¦¸
¸ÐÓ¦µç¶¯ÊÆEC=ByCv
¸ÐÓ¦µçÁ÷×î´óֵΪ Im=
=
=0.5A
ͨ¹ýµç×èR1µÄµçÁ÷ΪI1=
Im=
A
R1µÄ×î´ó¹¦ÂÊΪP1m=
R1=
W
£¨2£©½ðÊô°ôÔÈËÙͨ¹ý½ðÊôµ¼¹ìC´¦Ê±£¬ÍâÁ¦ÓÐ×î´óֵΪ
Fm=BImyC=0.2¡Á0.5¡Á1N=0.1N
£¨3£©¡ßE=Byv=Bv?1.0sin£¨
x£©£¬
¶øx=vt
¡àE=1.0sin
t£¨V£©£¬
ËùÒÔ¸ÐÓ¦µç¶¯ÊÆÓÐЧֵΪEÓÐ=
=
V
t=
=0.6s
ÓÉÄÜÁ¿ÊغãµÃ WÍâ=Q=
t=0.15J
´ð£º
£¨1£©½ðÊô°ôÔÚµ¼¹ìÉÏÔ˶¯Ê±R1µÄ×î´ó¹¦ÂÊÊÇ
W£»
£¨2£©ÍâÁ¦FµÄ×î´óÖµÊÇ0.1N£»
£¨3£©½ðÊô°ô»¬¹ýµ¼¹ìOAµÄ¹ý³Ì£¬ÍâÁ¦Ëù×öµÄ¹¦ÊÇ0.15J£®
¡ày=1.0sin£¨
| ¦Ð |
| 3 |
½ðÊô°ô»¬ÖÁCµãʱ
xC=
| xA |
| 2 |
¹ÊyC=1.0sin
| ¦Ð |
| 3 |
µç·×ܵç×èR×Ü=
| R1R2 |
| R1+R2 |
¸ÐÓ¦µç¶¯ÊÆEC=ByCv
¸ÐÓ¦µçÁ÷×î´óֵΪ Im=
| EC |
| R×Ü |
| ByCv |
| R×Ü |
ͨ¹ýµç×èR1µÄµçÁ÷ΪI1=
| R2 |
| R1+R2 |
| 1 |
| 3 |
R1µÄ×î´ó¹¦ÂÊΪP1m=
| I | 21 |
| 1 |
| 3 |
£¨2£©½ðÊô°ôÔÈËÙͨ¹ý½ðÊôµ¼¹ìC´¦Ê±£¬ÍâÁ¦ÓÐ×î´óֵΪ
Fm=BImyC=0.2¡Á0.5¡Á1N=0.1N
£¨3£©¡ßE=Byv=Bv?1.0sin£¨
| ¦Ð |
| 3 |
¶øx=vt
¡àE=1.0sin
| 5¦Ð |
| 3 |
ËùÒÔ¸ÐÓ¦µç¶¯ÊÆÓÐЧֵΪEÓÐ=
| Em | ||
|
| ||
| 2 |
t=
| xA |
| v |
ÓÉÄÜÁ¿ÊغãµÃ WÍâ=Q=
| ||
| R×Ü |
´ð£º
£¨1£©½ðÊô°ôÔÚµ¼¹ìÉÏÔ˶¯Ê±R1µÄ×î´ó¹¦ÂÊÊÇ
| 1 |
| 3 |
£¨2£©ÍâÁ¦FµÄ×î´óÖµÊÇ0.1N£»
£¨3£©½ðÊô°ô»¬¹ýµ¼¹ìOAµÄ¹ý³Ì£¬ÍâÁ¦Ëù×öµÄ¹¦ÊÇ0.15J£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿