ÌâÄ¿ÄÚÈÝ
4£®·ÖÎö С»¬°åÀ뿪Nºó×öƽÅ×Ô˶¯£¬¸ù¾Ý·ÖÎ»ÒÆ¹«Ê½Çó½âƽÅ׵ijõËÙ¶È£»¶ÔС»¬°åµÄÖ±ÏßÔ˶¯¹ý³Ì£¬ÊÇÏȼÓËÙºó¼õËÙ£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½â¼ÓËÙ¶È£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽ°åµÄ³¤¶ÈLºÍÔ˶¯Ê±¼ä£»Ô²ÅÌÖÁÉÙת¶¯Ò»È¦£¬¸ù¾Ý½ÇËٶȶ¨ÒåÇó½â×îС½ÇËÙ¶È£®
½â´ð ½â£ºÐ¡»¬°åÀ뿪Nºó×öƽÅ×Ô˶¯¹ý³Ì£¬ÓУº
R-r=vNt
h=$\frac{1}{2}g{t}_{1}^{2}$
ÁªÁ¢½âµÃ£º
t1=0.5s
vN=2m/s
´ÓMµ½N¹ý³Ì£¬ÏȼÓËÙºó¼õËÙ£»
¼ÓËÙ¹ý³ÌµÄ¼ÓËÙ¶È£º
a1=$\frac{F-¦Ìmg}{m}=\frac{6-0.2¡Á0.5¡Á10}{0.5}=10m/{s}^{2}$
¼ÓËÙ¹ý³ÌµÄÄ©ËÙ¶È£º
v1=a1t2=10¡Á0.4=4m/s
¼ÓËÙÎ»ÒÆ£º
${x}_{1}=\frac{{v}_{1}{t}_{2}}{2}=\frac{4¡Á0.4}{2}=0.8m$
¼õËÙ¹ý³ÌµÄ¼ÓËÙ¶È£º
a2=-¦Ìg=-2m/s2
¹Ê¼õËÙʱ¼ä£º
${t}_{3}=\frac{{v}_{N}-{v}_{1}}{{a}_{2}}=\frac{2-4}{-2}=1s$
¼õËÙÎ»ÒÆ£º
${x}_{2}=\overline{v}{t}_{3}=\frac{4+2}{2}¡Á1=3m$
¹Ê°å³¤£ºL=x1+x2=0.8m+3m=3.8m
Ô˶¯µÄ×Üʱ¼ä£º
t=t1+t2+t3=0.5+0.4+1=1.9s
¹ÊÔ²Å̵Ä×îС½ÇËÙ¶ÈΪ£º
¦Ø=$\frac{2¦Ð}{1.9s}$¡Ö3.3rad/s
´ð£º°åµÄ³¤¶ÈLΪ3.8m£¬Ô²ÅÌת¶¯µÄ½ÇËÙ¶ÈÖÁÉÙ3.3rad/s£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·»¬¿éµÄÔ˶¯ÐÔÖÊ£¬·ÖÔȼÓËÙÖ±ÏßÔ˶¯¡¢ÔȼÓËÙÖ±ÏßÔ˶¯ºÍƽÅ×Ô˶¯·Ö¶Î·ÖÎö£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½¡¢Æ½Å×Ô˶¯µÄ·ÖÎ»ÒÆ¹«Ê½ÁÐʽÇó½â£¬»¹Òª×¢ÒâÓëÔ²ÖÜÔ˶¯¾ßÓеÈʱÐÔ£®
| A£® | Ë®Æ½Î»ÒÆºÍʱ¼ä | B£® | ÏÂÂä¸ß¶ÈºÍʱ¼ä | ||
| C£® | ÂäµØÊ±ËٶȵĴóСºÍ·½Ïò | D£® | ÂäµØÊ±Î»ÒÆµÄ´óСºÍ·½Ïò |
| A£® | 0¡æµÄ±ùÈÛ»¯³É0¡æµÄË®µÄ¹ý³ÌÖÐÄÚÄܺͷÖ×ÓÊÆÄܶ¼ÓÐÔö´ó | |
| B£® | µ±ÈËÃǸе½³±ÊªÊ±£¬¿ÕÆøµÄ¾ø¶ÔÃܶÈÒ»¶¨½Ï´ó | |
| C£® | ¾§ÌåÒ»¶¨¾ßÓйæÔòµÄ¼¸ºÎÍâÐÎ | |
| D£® | Òº¾§ÏñÒºÌåÒ»Ñù¾ßÓÐÁ÷¶¯ÐÔ£¬¶øÆä¹âѧÐÔÖʺÍijЩ¾§ÌåÏàËÆ¾ßÓи÷ÏòÒìÐÔ | |
| E£® | Ë®µÄ±¥ºÍÆûÑ¹ËæÎ¶ȵÄÉý¸ß¶øÔö´ó |
| A£® | $\frac{d{v}_{2}}{\sqrt{{{v}_{2}}^{2}-{{v}_{1}}^{2}}}$ | B£® | $\frac{d\sqrt{{{v}_{1}}^{2}+{{v}_{2}}^{2}}}{{v}_{2}}$ | C£® | $\frac{d}{{v}_{2}}$ | D£® | $\frac{d}{{v}_{1}}$ |