ÌâÄ¿ÄÚÈÝ
6£®| A£® | Ï»¬µÄÕû¸ö¹ý³ÌÖÐPÇò»úеÄÜÊØºã | |
| B£® | Ï»¬µÄÕû¸ö¹ý³ÌÖÐÁ½Çò×é³ÉµÄϵͳ»úеÄÜÊØºã | |
| C£® | QÇò¹ýCµãµÄËÙ¶È´óСΪ$\sqrt{£¨4-\sqrt{3}£©gR}$ | |
| D£® | Ï»¬µÄÕû¸ö¹ý³ÌÖÐQÇò»úеÄÜÔö¼ÓÁ¿ÎªmgR |
·ÖÎö Ï»¬¹ý³ÌÁ½¸öÇò×é³ÉµÄϵͳ£¬Ö»ÓÐÖØÁ¦×ö¹¦£¬»úеÄÜÊØºã£»¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉÁÐʽÇó½âËÙ¶È£»Á½¸öÇòÑØ×ŸË×Ó·½ÏòµÄ·ÖËÙ¶ÈÒ»Ö±ÊÇÏàµÈµÄ£®
½â´ð ½â£ºA¡¢B¡¢Ï»¬¹ý³ÌÖУ¬¶ÔÁ½¸öÇò×é³ÉµÄϵͳ£¬Ö»ÓÐÖØÁ¦×ö¹¦£¬¹Ê»úеÄÜÊØºã£¬¶øµ¥¸öÇò»úеÄܾù²»Êغ㣬¹ÊA´íÎó£¬BÕýÈ·£»
C¡¢QÇò¹ýCµãʱ£¬¸ËÓëˮƽ·½ÏòµÄ¼Ð½ÇµÄÓàÏÒ£ºcos¦È=$\frac{R}{2R}=\frac{1}{2}$£¬¹Ê¦È=60¡ã£»
¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉ£¬ÓУº
mgR+mg£¨3R-$\sqrt{3}$R£©=$\frac{1}{2}m{v}_{P}^{2}+\frac{1}{2}m{v}_{Q}^{2}$ ¢Ù
¸Ë²»¿ÉÉ쳤£¬¹ÊÁ½¸öÇòÑØ×Ÿ˷½ÏòµÄ·ÖËÙ¶ÈÏàµÈ£¬¹Ê£º
vPcos30¡ã=vQcos60¡ã ¢Ú
ÁªÁ¢½âµÃ£º
vP=$\sqrt{\frac{4-\sqrt{3}}{2}gR}$
vQ=$\sqrt{\frac{12-3\sqrt{3}}{2}gR}$
¹ÊC´íÎó£»
D¡¢Ï»¬µÄÕû¸ö¹ý³ÌÖУ¬¸ù¾Ý»úеÄÜÊØºã¶¨ÂÉ£¬ÓУº
$mgR+mg£¨3R£©=\frac{1}{2}m{v}^{2}¡Á2$
½âµÃ£º
v=2$\sqrt{gR}$
¹ÊQÇò»úеÄÜÔö¼ÓÁ¿Îª£º¡÷E=$\frac{1}{2}m{v}^{2}-mgR$=mgR£»¹ÊDÕýÈ·£»
¹ÊÑ¡£ºBD£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Á½¸öСÇòϵͳµÄ»úеÄÜÊØºã£¬È»ºó½áºÏ»úеÄÜÊØºã¶¨ÂɺÍÔ˶¯µÄºÏ³ÉÓë·Ö½âµÄ֪ʶÁÐʽ·ÖÎö£¬²»ÄÑ£®
| A£® | 2£º3 | B£® | 3£º4 | C£® | 4£º3 | D£® | 8£º3 |
| A£® | B£® | C£® | D£® |
| A£® | 3N | B£® | 5N | C£® | 7N | D£® | 9N |
| A£® | $\frac{10}{9}$m/s2 | B£® | 2.0m/s2 | C£® | 1.0 m/s2 | D£® | $\frac{5}{3}$m/s2 |